
Lucien	Michaël	Iseli,	274999

Florian	Maxime	Charles	Ravasi,	245940

Jules	Eliott	Gottraux,	262413

Milestone	3

Design	choices

The	goal	when	creating	a	database	management	system	is	to	separate	as	much	as	possible	the	entities	so	that	when	using	a	small	portion

of	the	data	in	the	database,	which	is	normally	the	case,	we	will	only	join	useful	tables	and so	will	have	less	overhead	induced	by	the	useless

data.	Thus,	we	separated	the	hosts,	the	dates,	the	countries	etc...	in	their	separate	tables	(see	the	diagram	for	an	exhaustive	list	of	the

entities).	This	way,	when	doing	a	query	over	the	listings,	we	begin	with	the	Listings table	which	only	contains	the	ids	of	the	related

informations	and	we	join	with	the	needed	tables.	The	idea	is	really	to	not	join	useless	data,	the	textual	informations	is	completely	separated

from	all	other	data	in	an	entity	Listing_infos	for	that	reason:	we	will	rarely	(never	in	a	practical	sense)	make	query	regarding	the	description

that	the	listing	has,	it	is	for	human	and	not	database.

The	idea	behind	those	entity	is	also	to	have	an	intuitive	structure.	For	example	for	the	neighbourhoods,	we	have	a	textual	description	of	the

neighbourhood	of	the	listing,	along	with	the	name	of	the	neighbourhood	and	the	neighbourhood	of	the	host.	Thus,	the	neighbourhood	is	an

entity	by	itself	in	realtion	with	the	description	of	that	neighbourhood.	That	way	data	that	are	meaningful	to	each	other	are	close	but	are

separated	enough	so	that	an	entity have	a	meaning	but	is	as	close	as	possible

In	order	to	decrease	the	duplication	in	certain	tables,	we	chose	to	create	separate	tables	for	unique	"objects"	such	as	the	Amenity,	City,

Room_type	or	Cancellation_policy	tables	for	example.	Therefore,	instead	of	having	duplicates	stored	as	string	in	the	Bedroom	table,	for

example,	it	is	stored	as	identifiers,	i.e	integers.	Hence,	the	queries	are	faster	because	we	do	not	compute	equalities	on	string	anymore	and

we	avoid	storing	strings	in	all	rows	of	table	but	rather	a	string	one	time	and	then	a	reference	to	this	string,	reducing	the	amount	of	data

stored	significantly.

As	an	example,	imagine	we	are	querying	about	accomodations,	but	we	want	to	filter	them	according	to	the	room	type	and	the	amenity	they

possess.	We	can	filter	out	the	accommodations	according	to	the	room	type	id	and	the	amenity	ids	comparing	only	integers	when	using	the

accomodation	table.

Some	other	less	important	choice	of	implementation	we	made	are	to	store	boolean	as	integer	value	rather	than	string	or	sets	has	many-to-

many	relationship	rather	than	strings	too.	For	the	amenities	for	example,	at	first	in	the	data	they	are	as	string	of	the	form	{Wifi,	Shampoo,	...}

but,	not	even	speaking	about	the	duplication,	it	is	a	very	bad	design	to	store	as	this	in	the	database.	To	make	a	query	on	accommodation

that	contain	the	Wifi	amenity,	we	would	need	to	make	a	amenity	like	"%Wifi%"	which	is	not	efficient.

We	decided	not	to	map	all	version	of	a	city	name	to	the	real	city	name	to	not	loose	information,	thus	when	making	a	query	for	Berlin	for

example,	an	equality	with	"Berlin"	would	miss	a	singnificative	part	of	listings	that	in	fact	are	in	Berlin.	To	lessen	this	effect	when	making	a

query	we	just	lower	the	two	name	and	check	if	the	string	contains	the	lowered	city	name.

We	have	to	remove	around	5	rows	of	data	of	the	csv,	example	reason	are	that	one	host	had	a	duplicated	host_id	and	some	names	were	on

multiple	lines.

Entity	Relationship	Diagram

Creation	of	Tables

CREATE	TABLE	Reviewers(rev_id	INTEGER	NOT	NULL,	rev_name	CHAR(50),	primary	key(rev_id));

CREATE	TABLE	Reviews(list_id	INTEGER	NOT	NULL,	review_id	INTEGER	NOT	NULL,	date	DATE,	rev_id	INTEGER	NOT	NULL,	

comments	VARCHAR(100),	primary	key(review_id),	foreign	key(rev_id)	references	Reviewers,	foreign	key(list_id)	r

eferences	Listings);

CREATE	TABLE	Listings_infos(list_info_id	INTEGER	NOT	NULL,	list_url	VARCHAR(30),	name	VARCHAR(10),	summary	VARC

HAR(100),	space	VARCHAR(100),	description	VARCHAR(100),	notes	VARCHAR(100),	transit	VARCHAR(100),	interaction	V

ARCHAR(100),	picture_url	VARCHAR(50),	primary	key(list_info_id));

CREATE	TABLE	Rules_listing(rules_list_id	INTEGER	NOT	NULL,	house_rules	VARCHAR(100),	min_nights	INTEGER,	max_ni

ghts	INTEGER,	is_business_travel_ready	INTEGER,	canc_policy_id	INTEGER	NOT	NULL,	require_profile_picture	INTEGE

R,	require_phone_verif	INTEGER,	primary	key(rules_list_id),	foreign	key(canc_policy_id)	references	Cancellation

_policies);

CREATE	TABLE	Cancellation_policies(canc_policy_id	INTEGER	NOT	NULL,	value	CHAR(28)	NOT	NULL,	primary	key(canc_p

olicy_id),	unique(value));

CREATE	TABLE	Listings(id	INTEGER	NOT	NULL,	list_info_id	INTEGER	NOT	NULL,	rules_list_id	INTEGER	NOT	NULL,	host_

id	INTEGER	NOT	NULL,	price_id	INTEGER	NOT	NULL,	location_id	INTEGER	NOT NULL,	acc_id	INTEGER	NOT	NULL,	review_s

cores_id	INTEGER,	primary	key(id),	foreign	key(list_info_id)	references Listings_infos,	foreign	key(rules_list_

id)	references	Rules_listing,	foreign	key(host_id)	references	Hosts,	foreign	key(price_id)	references	Prices,	f

oreign	key(location_id)	references	Locations,	foreign	key(acc_id)	references	Accommodations,	foreign	key(review

_scores_id)	references	Review_scores);

CREATE	TABLE	Host_response(resp_id	INTEGER	NOT	NULL,	time	VARCHAR(20),	rate	INTEGER,	primary	key(resp_id),	uniq

ue(time,	rate));

CREATE	TABLE	Host_links(host_links_id	INTEGER	NOT	NULL,	host_url	VARCHAR(50),	host_thumbnail_url	VARCHAR(50),	h

ost_picture_url	VARCHAR(50),	primary	key(host_links_id));

CREATE	TABLE	Prices(price_id	INTEGER	NOT	NULL,	price	FLOAT,	weekly_price	FLOAT,	monthly_price	FLOAT,security_de

posit	FLOAT,cleaning_fee	FLOAT,	guests_included	INTEGER,	extra_people	INTEGER,	primary	key(price_id),	unique(pr

ice,	weekly_price,	monthly_price,	guests_included,	extra_people,	cleaning_fee,	security_deposit));

CREATE	TABLE	Review_scores(review_scores_id	INTEGER	NOT	NULL,	review_scores_rating	INTEGER,	review_scores_accur

acy	INTEGER,	review_scores_cleanliness	INTEGER,	review_scores_checkin	INTEGER,	review_scores_communication	INTE

GER,	review_scores_location	INTEGER,	review_scores_value	INTEGER,	primary	key(review_scores_id),	unique(review_

scores_rating,	review_scores_accuracy,	review_scores_cleanliness,	review_scores_checkin,	review_scores_communic

ation,	review_scores_location,	review_scores_value));

CREATE	TABLE	Property_types(property_type_id	INTEGER	NOT	NULL,	value	VARCHAR(6)	NOT	NULL,	primary	key(property_

type_id),	unique(value))	;

CREATE	TABLE	Room_types(room_type_id	INTEGER	NOT	NULL,	value	CHAR(16)	NOT	NULL,	primary	key(room_type_id),	uniq

ue(value));

CREATE	TABLE	Bedrooms(bedroom_id	INTEGER	NOT	NULL,	number_bedroom	INTEGER,	number_beds	INTEGER,	bed_type_id	INT

EGER	NOT	NULL,	primary	key(bedroom_id),	foreign	key(bed_type_id)	references	Bed_types,	unique(number_bedroom,	n

umber_beds,	bed_type_id));

CREATE	TABLE	Bed_types(bed_type_id	INTEGER	NOT	NULL,	value	CHAR(15)	NOT NULL,	primary	key(bed_type_id),	unique(

value));

CREATE	TABLE	Has_amenities(acc_id	INTEGER	NOT	NULL,	amenity_id	INTEGER	NOT	NULL,	primary	key(acc_id,	amenity_id

),	foreign	key(acc_id)	references	Accommodations,	foreign	key(amenity_id)	references	Amenities);

CREATE	TABLE	Amenities(amenity_id	INTEGER	NOT	NULL,	value	VARCHAR(8)	NOT	NULL,	primary	key(amenity_id),	unique(

value));

CREATE	TABLE	Locations(loc_id	INTEGER	NOT	NULL,	descr_id	INTEGER	NOT	NULL,	city_id	INTEGER	NOT	NULL,	country_id

	INTEGER	NOT	NULL,	latitude	FLOAT,	longitude	FLOAT,	primary	key(loc_id),	foreign	key(country_id)	references	Cou

ntries,	foreign	key(city_id)	references	Cities,	foreign	key(descr_id)	references	Neighbourhood_descriptions)	;

CREATE	TABLE	Cities(city_id	INTEGER	NOT	NULL,	name	VARCHAR(8)	NOT	NULL, primary	key(city_id),	unique(name));

CREATE	TABLE	Countries(country_id	INTEGER	NOT	NULL,	country_code	CHAR(2)	NOT	NULL,	country_name	CHAR(10)	NOT	NU

LL,	primary	key(country_id),	unique(country_code,	country_name));

CREATE	TABLE	Hosts(host_id	INTEGER	NOT	NULL,	h_name	VARCHAR(10),	h_since	DATE,	h_about	VARCHAR(50),	h_urls_id	I

NTEGER	NOT	NULL,	h_response_id	INTEGER	NOT	NULL,	h_neighb_id	INTEGER	NOT	NULL,	primary	key(host_id),	foreign	ke

y(h_urls_id)	references	Host_links,	foreign	key(h_response_id)	references	Host_response,	foreign	key(h_neighb_i

d)	references	Neighbourhoods);

CREATE	TABLE	Host_verifications(host_id	INTEGER	NOT	NULL,	verif_id	INTEGER	NOT	NULL,	primary	key(host_id,	verif

_id),	foreign	key(host_id)	references	Hosts,	foreign	key(verif_id)	references	Verifications);

CREATE	TABLE	Verifications(verif_id	INTEGER	NOT	NULL,	verif_value	CHAR(25)	NOT	NULL,	primary	key(verif_id),	uni

que(verif_value));

CREATE	TABLE	Neighbourhood_descriptions(descr_id	INTEGER	NOT	NULL,	description	VARCHAR(100),	neighb_id	INTEGER	

NOT	NULL,	primary	key(descr_id),	foreign	key(neighb_id)	references	Neighbourhoods);

CREATE	TABLE	Neighbourhoods(neighb_id	INTEGER	NOT	NULL,	name	VARCHAR(8) NOT	NULL,	primary	key(neighb_id),	uniqu

e(name));

CREATE	TABLE	Dates(date_id	INTEGER	NOT	NULL,	list_id	INTEGER	NOT	NULL,	date	DATE,	availability	INTEGER,	price	F

LOAT,	primary	key(date_id),	foreign	key(list_id)	references	Listings);

CREATE	TABLE	Accommodations(acc_id	INTEGER	NOT	NULL,	access	VARCHAR(100),	property_type_id	INTEGER	NOT	NULL,	ro

om_type_id	INTEGER	NOT	NULL,	accommodates	INTEGER,	bathrooms	INTEGER,	bedroom_id	INTEGER	NOT	NULL,	square_feet	

INTEGER,	primary	key(acc_id),	foreign	key(property_type_id)	references	Property_types,	foreign	key(room_type_id

)	references	Room_types,	foreign	key(bedroom_id)	references	Bedrooms,	unique(access,	property_type_id,	room_typ

e_id,	accommodates,	bathrooms,	bedroom_id,	square_feet));

Parsing	and	insertion	of	the	data

We	parsed	the	data	using	terminal	commands,	with	awk,	sed,	cut,	etc...	In	order	to	get	csv	files	with	information	related	to	a	table.	Example

of	command:

csvquote	All_listings.csv	|	cut	-d,	-f1,10,33,34,39,31,32,35,36,37,38	| csvquote	-u	|	awk	-F','	'{if(NR!=1)	{pr

int	NR-2,$0}	else	{print	"acc_id",$0}}'	|	sed	's/\s/,/'	>	../tables_csv/Accommodations_extended

We	then	have	many	finer-grained	csv	files	containing	more	specific	data,	and	then	we	read	these	files	and	insert	everything	in	our	sqlite

database	with	python.

So	the	main	challenge	was	extracting	the	valuable	data	regarding	a	specific	table	from	the	given	csv	files.	Then	reading	it	and	inserting	the

proper	data	in	sqlite	with	python	while	being	careful	to	not	break	relations	between	entities.

Queries	of	deliverable	2

1.	What	is	the	average	price	for	a	listing	with	8	bedrooms?

SELECT	AVG(P.price)

FROM	Prices	P,	Listings	L,	Accommodations	A,	Bedrooms	B

WHERE	P.price_id	=	L.price_id	AND	L.acc_id	=	A.acc_id	AND	A.bedroom_id	=	B.bedroom_id	AND	B.number_bedroom	=	8;

Result

AVG(P.price)

313.153846153846

2.	What	is	the	average	cleaning	review	score	for	listings	with	TV?

SELECT	AVG(R.review_scores_cleanliness)

FROM	Review_scores	R

WHERE	R.review_scores_id	IN(SELECT	L.review_scores_id

		FROM	Listings	L

		WHERE	L.acc_id	IN(SELECT	AC.acc_id

				FROM	Accommodations	AC,	Has_amenities	H

				WHERE	AC.acc_id	=	H.acc_id	AND	H.amenity_id	IN(SELECT

						AM.amenity_id

						FROM	Amenities	AM

						WHERE	AM.value	=	"TV")));

Result

AVG(R.review_scores_cleanliness)

8.45286155307528

3.	Print	all	the	hosts	who	have	an	available	property	between	date	03.2019	and

09.2019.

SELECT	DISTINCT	H.h_name

FROM	Hosts	H,	Listings	L,	Dates	D

WHERE	H.host_id	=	L.host_id	AND	L.id	=	D.list_id	AND	D.availability	=	1 AND	D.date	>=	'2019-03'	AND	D.date	<=	'

2019-09';

Result

h_name

Nieves

Patricia

Rafael

Abdel

Javier

4.	Print	how	many	listing	items	exist	that	are	posted	by	two	different	hosts	but	the

hosts	have	the	same	name.

CREATE	VIEW	IdName	AS

SELECT	L.id,	L.host_id,	H.h_name

FROM	Listings	L,	Hosts	H

WHERE	L.host_id	=	H.host_id;

SELECT	COUNT(DISTINCT	I1.id)

FROM	IdName	I1,	IdName	I2

WHERE	I1.host_id	>	I2.host_id	AND	I1.h_name	=	I2.h_name

Result

COUNT(DISTINCT	I1.id)

26533

5.	Print	all	the	dates	that	'Viajes	Eco'	has	available	accomodations	for	rent

(Assuming that	'Viajes	Eco'	is	a	host	name)

Create	View	Viajes_ids	as

Select	id

From	Listings	L

Inner	Join	Hosts	H	on	H.host_id	=	L.host_id

Where	H.h_name	=	'Viajes	Eco';

Select	D.date

From	Dates	D

Inner	Join	Viajes_ids	V	on	D.list_id	=	V.id

where	D.availability	=	1;

Result

date

2019-03-03

2019-03-02

2019-03-01

2019-02-28

2019-02-27

6.	Find	all	the	hosts	(host_ids,	host_names)	that	have	only	one	listing.

SELECT	DISTINCT	H.host_id,	H.h_name

FROM	Hosts	H

WHERE H.host_id IN (SELECT L.host_id

		FROM	Listings	L

		GROUP	BY	L.host_id

		HAVING	COUNT(*)	=	1)

Result

host_id h_name

3073 Ricard

3718 Britta

4108 Jana

5154 "Raúl"

11015 Josaiah

7.	What	is	the	difference	in	the	average	price	of	listings	with	and	without	Wifi.

CREATE	VIEW	LWifi	AS

SELECT	L.id

FROM	Listings	L

WHERE	L.acc_id	IN(SELECT	A.acc_id

		FROM	Accommodations	A,	Has_amenities	H

		WHERE	A.acc_id	=	H.acc_id	AND	H.amenity_id	IN(SELECT	amenity_id

				FROM	Amenities	A

				WHERE	A.value	=	"Wifi"));

SELECT

		(SELECT	AVG(P.price)

		FROM	Prices	P,	Listings	L

		WHERE	P.price_id	=	L.price_id	AND	L.id	IN	(SELECT	L2.id

																																																FROM	LWifi	L2))

		-

		(SELECT	AVG(P.price)

		FROM	Prices	P

		WHERE	P.price_id	IN(SELECT	L.id

				FROM	Listings	L

				WHERE	L.id	NOT	IN(SELECT	L2.id

						FROM	LWifi	L2)))

Result

13.9926227916909

8.	How	much	more	(or	less)	costly	to	rent	a	room	with	8	beds	in	Berlin	compared	to

Madrid	on	average?

Create	View	List_ids	as

Select	L.price_id,	L.location_id

From	Listings	L

Where	L.acc_id	In	(

		Select	A.acc_id

		From	Accommodations	A

		Inner	Join	Bedrooms	B	on	A.bedroom_id	=	B.bedroom_id

		Where	B.number_beds	=	8);

Create	View	List_ids_Berlin	as

Select	L.price_id

From	List_ids	L

Where	L.location_id	In	(

		Select	Loc.loc_id

		From	Locations	Loc

		Where	Loc.city_id	In	(

				Select	C.city_id

				From	Cities	C

				Where	LOWER(C.name)	LIKE	'%berlin%')

);

Create	View	List_ids_Madrid	as

Select	L.price_id

From	List_ids	L

Where	L.location_id	In	(

		Select	Loc.loc_id

		From	Locations	Loc

		Where	Loc.city_id	In	(

				Select	C.city_id

				From	Cities	C

				Where	LOWER(C.name)	LIKE	'%madrid%')

);

SELECT

		(Select	avg(P_b.price)

		From	List_ids_Berlin	L_b

		Inner	Join	Prices	P_b	on	P_b.price_id	=	L_b.price_id)

		-

		(Select	avg(P_m.price)

		From	List_ids_Madrid	L_m

		Inner	Join	Prices	P_m	on	P_m.price_id	=	L_m.price_id);

Result

-101.592615012107

9.	Find	the	top-10	(in	terms	of	the	number	of	listings)	hosts	(host_ids,	host_names)

in	Spain.

CREATE	VIEW	LMadrid	AS

SELECT	LI.id,	LI.host_id

FROM	Listings	LI

WHERE	LI.location_id	IN(SELECT	LO.loc_id

		FROM	Locations	LO

		WHERE	LO.city_id	IN(SELECT	C.city_id

			FROM	Cities	C

			WHERE	LOWER(C.name)	like	'%madrid%'));

CREATE	VIEW	Custom	AS

SELECT	L.id,	H.host_id,	H.h_name

FROM	Hosts	H

INNER	JOIN	LMadrid	L	ON	H.host_id	=	L.host_id;

SELECT	C.host_id,	C.h_name

FROM	Custom	C

GROUP	BY	C.host_id

ORDER	BY	COUNT(C.host_id)	DESC

LIMIT	10

Result

host_id h_name

99018982 Apartamentos

32046323 Juan

28038703 "Luxury	Rentals	Madrid"

3566146 "Home	Club"

1408525 Mad4Rent

10.	Find	the	top-10	rated	(review_score_rating)	apartments	(id,	name)	in	Barcelona

Create	View	List_ids_Barcelona	as

Select	L.id,	L.review_scores_id,	L.list_info_id

From	Listings	L

Where	L.location_id	In	(

		Select	Loc.loc_id

		From	Locations	Loc

		Where	Loc.city_id	In	(

				Select	C.city_id

				From	Cities	C

				Where	LOWER(C.name)	LIKE	'%barcelona%')

);

Create	View	List_ids	as

Select	L.id,	L.list_info_id

From	List_ids_Barcelona	L

Inner	Join	Review_scores	R	on	L.review_scores_id	=	R.review_scores_id

Order	by	R.review_scores_rating	DESC

LIMIT	10;

Select	L1.id,	L2.name

From	List_ids	L1

Inner	Join	Listings_infos	L2	on	L1.list_info_id	=	L2.list_info_id;

Result

id name

71520 "Charming	apartment	with	fantastic	views!"

179488 "Room	for	rent	in	BCN/	non	smoker"

190348 "Apartment	with	large	terrace"

250016 "Excellent	-	3	bedrooms

282679 "Charming	Penthouse

Queries	of	deliverable	3

1.	Print	how	many	hosts	in	each	city	have	declared	the	area	of	their	property	in

square	meters.	Sort	the	output	based	on	the	city	name	in	ascending	order

Select	C.name,	count(C.name)

From	Listings	L	Inner	Join	Accommodations	A	on	A.acc_id	=	L.acc_id

Inner	Join	Locations	Loc	on	Loc.loc_id	=	L.location_id

	 Inner	Join	Cities	C	on	C.city_id	=	Loc.city_id

	 Where	square_feet	is	not	null

	 Group	by	C.name

	 Order	by	C.name;

Result

name count(C.name)

Barcelona 463

Berlin 402

"Berlin	(Kreuzberg)" 1

Berlin-Wedding 1

Chiva 1

61	ms

2.	The	quality	of	a	neighborhood	is	defined	based	on	the	number	of	listings	and

the	review	score	of	these	listings,	one	way	for	computing	that is	using	the	median

of	the	review	scores,	as	medians	are	more	robust	to	outliers.	Find	the	top-5

neighborhoods	using	median	review	scores(review_scores_ratingof	listings	in

Madrid.	Note:	Implement	the	median	operator	on	your	own,	and	do	not	use	the

available	built-in	operator

drop	view	if	exists	ratings_with_neighb;

Create	view	ratings_with_neighb	as

Select	N.neighb_id,	N.name,	S.review_scores_rating

From	Listings	L	Inner	Join	Locations	Loc	on	Loc.loc_id	=	location_id

	 Inner	Join	Neighbourhood_descriptions	ND	on	ND.descr_id	=	Loc.descr_id

	 Inner	Join	Neighbourhoods	N	on	ND.neighb_id	=	N.neighb_id

	 Inner	Join	Review_scores	S	on	L.review_scores_id	=	S.review_scores_id

	 Inner	Join	Cities	C	on	Loc.city_id	=	C.city_id

Where	lower(C.name)	like	'%madrid%';

Drop	view	if	exists	ratings_with_neighb2;

Create	view	ratings_with_neighb2	as

SELECT	neighb_id,	name,	review_scores_rating,	count_el

FROM(SELECT	name,	neighb_id,	review_scores_rating,	count(*)

				OVER(PARTITION	BY	N.neighb_id)	as	count_el

				From	ratings_with_neighb	N)	N2;

SELECT	neighb_id,	name,	review_scores_rating

FROM(SELECT	name,	neighb_id,	review_scores_rating,	count_el,	Row_Number()

				OVER(PARTITION	BY	L.neighb_id	ORDER	BY	L.review_scores_rating	DESC) AS	Row_Number

				From	ratings_with_neighb2	L)	L2

Where	Row_Number	=	1	+	(count_el	/	2)

Order	by	review_scores_rating	DESC

Limit	5;

Result

neighb_id name review_scores_rating

197 "Tetuán" 100

61 Estrella 98

29 Castilla 97

91 "Hispanoamérica" 96

142 Moratalaz 96

62	ms

3.	Find	all	the	hosts	(host_ids,	host_names)	with	the	highest	number	of	listings.

Select	H.host_id,	H.h_name

From	Hosts	H	Inner	Join	Listings	L	on	H.host_id	=	L.host_id

Group	by	H.host_id

Having	count(L.id)	>=	(

Select	max(counter)

From	(

	 Select	count(L.id)	as	counter

	 From	Hosts	H	Inner	Join	Listings	L	on	H.host_id	=	L.host_id

	 Group	by	H.host_id

));

Result

host_id h_name

4459553 Eva&Jacques

105	ms

4.	Find	the	5	most	cheapest	Apartments	(based	on	average	price	within	the

available	dates)	in	Berlin	availablefor	at	least	one	daybetween01-03-2019	and	30-

04-2019	having	at	least	2	beds,	a	location	review	score	of	at	least	8,	flexible

cancellation,	and	listed	by	a	host	with	a	verifiable	government	id.

drop	view	if	exists	ids_of_listings_in_Berlin;

Create	view	ids_of_listings_in_Berlin	as

Select	L.id

From	Listings	L	Inner	Join	Locations	Loc	on	L.location_id	=	Loc.loc_id

	 Inner	Join	Cities	C	on	C.city_id	=	Loc.city_id

Where	C.name	like	'%berlin%';

drop	view	if	exists	ids_of_listings_with_at_least_2_beds;

Create	view	ids_of_listings_with_at_least_2_beds	as

Select	L.id

From	Listings	L	Inner	Join	Accommodations	A	on	L.acc_id	=	A.acc_id

	 Inner	Join	Bedrooms	B	on	B.bedroom_id	=	A.bedroom_id

Where	B.number_beds	>	1;

drop	view	if	exists	ids_of_listings_with_at_least_8_loc_rev_score;

Create	view	ids_of_listings_with_at_least_8_loc_rev_score	as

Select	L.id

From	Listings	L	Inner	Join	Review_scores	Rev	on	L.review_scores_id	=	Rev.review_scores_id

Where	Rev.review_scores_location	>	7;

drop	view	if	exists	ids_of_listings_with_flexible_cancellation;

Create	view	ids_of_listings_with_flexible_cancellation	as

Select	L.id

From	Listings	L	Inner	Join	Rules_listing	Ru	on	L.rules_list_id	=	Ru.rules_list_id

	 Inner	Join	Cancellation_policies	CP	on	Ru.canc_policy_id	=	CP.canc_policy_id

Where	CP.value	=	'flexible';

drop	view	if	exists	ids_of_hosts_with_verif_gov_id;

Create	view	ids_of_hosts_with_verif_gov_id	as

Select	H.host_id

From	Hosts	H	Inner	Join	Host_verifications	HV	on	H.host_id	=	HV.host_id

	 Inner	Join	Verifications	V	on	V.verif_id	=	HV.verif_id

Where	V.verif_value	=	'government_id';

drop	view	if	exists	ids_of_listings_with_verif_gov_host;

Create	view	ids_of_listings_with_verif_gov_host	as

Select	L.id

From	Listings	L	Inner	Join	Hosts	H	on	L.host_id	=	H.host_id;

drop	view	if	exists	intersection_of_view_query_4;

Create	view	intersection_of_view_query_4	as

Select	*

From	ids_of_listings_in_Berlin

Intersect

Select	*

From	ids_of_listings_with_at_least_2_beds

Intersect

Select	*

From	ids_of_listings_with_at_least_8_loc_rev_score

Intersect

Select	*

From	ids_of_listings_with_flexible_cancellation

Intersect

Select	*

From	ids_of_listings_with_verif_gov_host;

Select	*	from

(

	 Select	D.list_id,	avg(price)	as	average_price

	 From	Dates_clustered	D

	 Where	D.date	>=	'2019-03-01'	and	D.date	<=	'2019-04-30'	and	D.availability	=	1

	 and	D.list_id	in	intersection_of_view_query_4

	 Group	by	D.list_id

)

Order	by	average_price

Limit	5;

Result

list_id average_price

16307669 19.6481481481481

1490274 20.0

27494978 20.0

28406345 20.0

24043706 21.0655737704918

1931	ms

5.	Each	property	can	accommodate	different	number	of	people	(1	to	16).	Find	the

top-5	rated	(review_score_rating)	listings	for	each	distinct	category	based	on

number	of	accommodated	guests	with	at	least	two	of	these	facilities:	Wifi,	Internet,

TV,and	Free	street	parking.

drop	view	if	exists	amenities_query_5;

CREATE	VIEW	amenities_query_5	as

select	amenity_id

from	Amenities

where	value	=	"Wifi"	or	value	=	"TV"	or	value	=	"Internet"	or	value	=	"Free	street	parking";

drop	view	if	exists	listings_filtered_query_5;

CREATE	VIEW	listings_filtered_query_5	as

Select	L.id,	R.review_scores_rating,	A.accommodates

from	Listings	L	Inner	Join	Accommodations	A	on	L.acc_id	=	A.acc_id

Inner	Join	Review_scores	R	on	R.review_scores_id	=	L.review_scores_id

Inner	Join	Has_amenities	H_a	on	H_a.acc_id	=	A.acc_id

Inner	Join	Amenities	A	on	A.amenity_id	=	H_a.amenity_id

where	A.amenity_id	in	amenities_query_5

group	by	L.id

Having	count(*)	>	1

order	by	R.review_scores_rating	desc;

Select	accommodates,	id,	review_scores_rating

from	(Select	accommodates,	id,	review_scores_rating,	Row_Number()

	 OVER(PARTITION	BY	L.accommodates	ORDER	BY	review_scores_rating	DESC)	as	Row_Number

	 FROM	listings_filtered_query_5	L)	L2	where	Row_Number	<=	5;

Result

accommodates id review_scores_rating

1 109369 100

1 179488 100

1 240735 100

1 250121 100

1 287660 100

160	ms

6.	What	are	top	three	busiest	listings	per	host?	The more	reviews	a	listing	has,	the

busier	the	listing	is.

DROP	VIEW	IF	EXISTS	listing_id_number_reviews;

Create	view	listing_id_number_reviews	as

Select	L.id,	L.host_id,	count(R.review_id)	as	busy_count

From	Reviews	R	Inner	Join	Listings	L	on	R.list_id	=	L.id

Group	By	L.id;

SELECT	host_id,	id

FROM(SELECT	host_id,	id,	Row_Number()

				OVER(PARTITION	BY	L.host_id	ORDER	BY	L.busy_count	DESC)	AS	Row_Number

				From	listing_id_number_reviews	L)	L2	Where	Row_Number	<=	3;

Result

host_id id

2217 2015

2217 21315310

2217 18773184

3073 6287375

3718 3176

1049	ms

7.	What	are	the	three	most	frequently	used	amenities	at	each	neighborhood	in

Berlin	for	the	listings	with	“Private	Room”	room	type?

DROP	VIEW	IF	EXISTS	Neighbourhood_In_Berlin_Private_Room;

CREATE	VIEW	Neighbourhood_In_Berlin_Private_Room	AS

SELECT	N.name,	Am.value

From	Listings	Li	Inner	Join	Locations	Loc	on	Li.location_id	=	Loc.loc_id	Inner	Join

Neighbourhood_descriptions	ND	on	Loc.descr_id	=	ND.descr_id	Inner	Join	Neighbourhoods	N

on	ND.neighb_id	=	N.neighb_id	Inner	Join	Accommodations	A	on	A.acc_id	= Li.acc_id	Inner	Join

Has_amenities	H	on	H.acc_id	=	A.acc_id	Inner	JOIN	Amenities	Am	on	Am.amenity_id	=	H.amenity_id

Inner	Join	Cities	C	on	C.city_id	=	Loc.city_id	Inner	Join	Room_types	R	on	R.room_type_id	=	A.room_type_id

WHERE	R.value='Private	room'	and	LOWER(C.name)	like	'%berlin%';

DROP	VIEW	IF	EXISTS	Neighbourhood_In_Berlin_Private_Room2;

CREATE	VIEW	Neighbourhood_In_Berlin_Private_Room2	AS

SELECT	N.name,	N.value,	Count(*)	as	count

FROM	Neighbourhood_In_Berlin_Private_Room	N

GROUP	BY	N.name,	N.value;

SELECT	N2.value,	N2.name

FROM(SELECT	value,	name,	Row_Number()

				OVER(PARTITION	BY	N.name	ORDER	BY	N.count	DESC)	AS	Row_Number

				From	Neighbourhood_In_Berlin_Private_Room2	N)	N2	WHERE	Row_Number	<=	3;

Result

value name

Essentials Adlershof

Heating Adlershof

Kitchen Adlershof

Essentials "Alt-Hohenschönhausen"

Wifi "Alt-Hohenschönhausen"

176	ms

8.	What	is	the	difference	in	the	average	communication	review	score	of	the	host

who	has	the	most diverse	way	of	verifications and	of	the	host	who	has	the	least

diverse	way	of	verifications.	In	case	of	a	multiple	number	of	the	most	or	the	least

diverse	verifyinghosts,	pick	a	host	one	from	the	most	and	one	from	the	least

verifyinghosts.

drop	view	if	exists	query_8_host_verifications_filtered;

create	view	query_8_host_verifications_filtered	as

Select	H.host_id

from	Hosts	H,	Listings	L,	Review_scores	R

where	H.host_id	=	L.host_id	and	L.review_scores_id	=	R.review_scores_id and	R.review_scores_communication	not	n

ull;

drop	view	if	exists	query_8_host_least_verifications;

create	view	query_8_host_least_verifications	as

select	host_id

from	query_8_host_verifications_filtered

where	host_id	not	in	(select	host_id

	 from	Host_verifications)

limit	1;

drop	view	if	exists	query_8_host_most_verifications;

create	view	query_8_host_most_verifications	as

select	host_id

from	Host_verifications

where	host_id	in	query_8_host_verifications_filtered

group	by	host_id

order	by	COUNT(*)	desc

limit	1;

SELECT

	 (select	AVG(R.review_scores_communication)

	 from	query_8_host_most_verifications	H,	Listings	L,	Review_scores	R

	 where	H.host_id	=	L.Host_id	and	L.review_scores_id	=	R.review_scores_id)

	 -

	 (select	AVG(R.review_scores_communication)

	 from	query_8_host_least_verifications	H,	Listings	L,	Review_scores	R

	 where	H.host_id	=	L.Host_id	and	L.review_scores_id	=	R.review_scores_id);

Result

0.0

127	ms

9.	What	is	the	city	who	has	the	highest	number	of	reviews	for	the	room	types

whose	average	number	of	accommodates	are	greater	than	3

drop	view	if	exists	ids_of_listings_and_loc_with_room_type_hv_acc_gt_3;

Create	view	ids_of_listings_and_loc_with_room_type_hv_acc_gt_3	as

Select	id,	location_id

From	Listings	L	Inner	Join	Accommodations	A	on	L.acc_id	=	A.acc_id

where	A.room_type_id

in	(Select	*	from

(

Select	Rt.room_type_id

From	Accommodations	A2	Inner	Join	Room_types	RT	on	A2.room_type_id	=	RT.room_type_id

Group	by	Rt.room_type_id

Having	avg(A2.accommodates)	>	3

));

Select	city_name,	rev_count

From

(

Select	C.name	as	city_name,	count(R.rev_id)	as	rev_count

From	ids_of_listings_and_loc_with_room_type_hv_acc_gt_3	V	Inner	Join

Locations	L	on	V.location_id	=	L.loc_id	Inner	Join

Cities	C	on	L.city_id	=	C.city_id	Inner	Join

Reviews	R	on	V.id	=	R.list_id

Group	by	C.name

)

Order	By	rev_count

Limit	1;

Result

city_name rev_count

"SavignyPlatz	(Charlottenburg)" 1

3029	ms

10.	Print	all	the	neighborhoods	in	Madrid	which	have	at	least	50	percent	of	their

listings	occupied	in	year	2019	and	their	host	has	joined	airbnb	before	01.06.20171

drop	view	if	exists	ids_and_loc_id_of_listings_in_Madrid_with_host_2017_06_01;

Create	view	ids_and_loc_id_of_listings_in_Madrid_with_host_2017_06_01	as

Select	L.id,	L.location_id

From	Listings	L	Inner	Join	Locations	Loc	on	L.location_id	=	Loc.loc_id

	 Inner	Join	Cities	C	on	C.city_id	=	Loc.city_id	Inner	Join	Hosts H

	 on	H.host_id	=	L.host_id

Where	lower(C.name)	like	'%madrid%'	and	H.h_since	<	'2017-06-01';

drop	view	if	exists	listings_occupied_query_10;

create	view	listings_occupied_query_10	as

Select	L.id

from	ids_and_loc_id_of_listings_in_Madrid_with_host_2017_06_01	L	inner	join	Dates	D	on	L.id	=	D.list_id

where	D.date	>=	"2019-01-01"	and	D.date	<=	"2019-12-31"	and	D.availability	=	0;

drop	view	if	exists	all_listings_query_10;

create	view	all_listings_query_10	as

Select	L.id

from	ids_and_loc_id_of_listings_in_Madrid_with_host_2017_06_01	L	inner	join	Dates	D	on	L.id	=	D.list_id

where	D.date	>=	"2019-01-01"	and	D.date	<=	"2019-12-31";

drop	view	if	exists	number_of_neighbourhood_occupied_query_10;

create	view	number_of_neighbourhood_occupied_query_10	as

Select	N.neighb_id,	COUNT(L.id)	as	counter

From	ids_and_loc_id_of_listings_in_Madrid_with_host_2017_06_01	L	inner	join	listings_occupied_query_10	L2	on	L.

id	=	L2.id	Inner	Join

	 Locations	 Loc	on	L.location_id	=	Loc.loc_id	Inner	Join	Neighbourhood_descriptions	ND

	 on	Loc.descr_id	=	ND.descr_id	Inner	Join	Neighbourhoods	N	on	ND.neighb_id	=	N.neighb_id

Group	by	N.neighb_id;

drop	view	if	exists	number_of_neighbourhood_query_10;

create	view	number_of_neighbourhood_query_10	as

Select	N.neighb_id,	COUNT(L.id)	as	counter

From	ids_and_loc_id_of_listings_in_Madrid_with_host_2017_06_01	L	inner	join	listings_occupied_query_10	L2	on	L.

id	=	L2.id	Inner	Join

	 Locations	 Loc	on	L.location_id	=	Loc.loc_id	Inner	Join	Neighbourhood_descriptions	ND

	 on	Loc.descr_id	=	ND.descr_id	Inner	Join	Neighbourhoods	N	on	ND.neighb_id	=	N.neighb_id

Group	by	N.neighb_id;

Select	N.neighb_id

From	number_of_neighbourhood_query_10	N	Inner	join	number_of_neighbourhood_occupied_query_10	N1

on	N.neighb_id	=	N1.neighb_id

Where	N1.counter	>	N.counter	/	2;

Result

neighb_id

0

1

3

4

8

9

8718	ms

11.	Print	all	the	countries	that	in	2018	had	at	least	20%	of	their	listings	available.

drop	view	if	exists	query_11_available_listings_2018;

create	view	query_11_available_listings_2018	as

Select	distinct	L.id,	L.location_id

from	Listings	L	inner	join	Dates_clustered	D	on	L.id	=	D.list_id

where	D.date	>=	"2018-01-01"	and	D.date	<=	"2018-12-31"	and	D.availability	=	1;

Select	C.country_name

from	Countries	C

Where	(Select	COUNT(L.id)

from	query_11_available_listings_2018	L	inner	join	Locations	Loc	on	L.location_id	=	Loc.loc_id	inner	join	Count

ries	C	on	Loc.country_id	=	C.country_id)	>=	(Select	COUNT(L.id)

	 from	Listings	L	inner	join	Locations	Loc	on	L.location_id	=	Loc.loc_id	inner	join	Countries	C	on	Loc.co

untry_id	=	C.country_id)/5;

Result

country_name

Germany

Spain

2535	ms

12.	Print	all	the	neighborhouds	in	Barcelona	where	more	than	5	percent	of	their

accommodation’s	cancelation	policy	is	strict	with	grace	period.

Drop	view	if	exists	ids_of_listings_with_strict_grace;

Create	view	ids_of_listings_with_strict_grace	as

Select	id,	location_id

From	Listings	L	Inner	Join	Rules_listing	RL	on	L.rules_list_id	=	RL.rules_list_id

Inner	Join	Cancellation_policies	CP	on	CP.canc_policy_id	=	RL.canc_policy_id

Where	CP.value	=	'strict_14_with_grace_period';

drop	view	if	exists	number_of_listing_per_neighbourhood_barcelona;

create	view	number_of_listing_per_neighbourhood_barcelona	as

Select	N.neighb_id,	COUNT(L.id)	as	counter

From	Listings	L	Inner	Join	Locations	 Loc	on	L.location_id	=	Loc.loc_id

Inner	Join	Neighbourhood_descriptions	ND	on	Loc.descr_id	=	ND.descr_id

Inner	Join	Neighbourhoods	N	on	ND.neighb_id	=	N.neighb_id

Inner	Join	Cities	C	on	Loc.city_id	=	C.city_id

Where	lower(C.name)	like	'%barcelona%'

Group	by	N.neighb_id;

drop	view	if	exists	number_of_listing_per_neighbourhood_barcelona_with_grace_period;

create	view	number_of_listing_per_neighbourhood_barcelona_with_grace_period	as

Select	N.neighb_id,	COUNT(L.id)	as	counter

From	ids_of_listings_with_strict_grace	L	Inner	Join	Locations	 Loc	on	L.location_id	=	Loc.loc_id

Inner	Join	Neighbourhood_descriptions	ND	on	Loc.descr_id	=	ND.descr_id

Inner	Join	Neighbourhoods	N	on	ND.neighb_id	=	N.neighb_id

Inner	Join	Cities	C	on	Loc.city_id	=	C.city_id

Where	lower(C.name)	like	'%barcelona%'

Group	by	N.neighb_id;

Select	T1.neighb_id

From	number_of_listing_per_neighbourhood_barcelona	T1	Inner	Join

number_of_listing_per_neighbourhood_barcelona_with_grace_period	T2	on	T1.neighb_id	=	T2.neighb_id

Where	20*T2.counter	>=	T1.counter;

Result

neighb_id

24

25

27

37

42

75	ms

Optimization	of	Queries	using	Indexes

Query	4

This	query	took	1931	ms	and	is	rather	complex	because	of	the	views,	however	the	query	the	final	executed	query	is:

Select	*	from

(

	 Select	D.list_id,	avg(price)	as	average_price

	 From	Dates	D

	 Where	D.date	>=	'2019-03-01'	and	D.date	<=	'2019-04-30'	and	D.availability	=	1

	 and	D.list_id	in	intersection_of_view_query_4

	 Group	by	D.list_id

)

Order	by	average_price

Limit	5;

So,	there	is	a	range	search	on	the	dates.	Knowing	that	the	Dates	table	is	enormous	(more that	15	million	dates),	this	range	has	a	really

small	selectivity.	We	thought	it	could	be	interesting	to	index	this	query.

The	query	had	the	following	query	plan:

QUERY	PLAN

|--CO-ROUTINE	2

|		|--SCAN	TABLE	Dates	AS	D

|		|--LIST	SUBQUERY	1

|		|		|--CO-ROUTINE	5

|		|		|		`--COMPOUND	QUERY

|		|		|					|--LEFT-MOST	SUBQUERY

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|		`--SEARCH	TABLE	Cities	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|--INTERSECT	USING	TEMP	B-TREE

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		|--SEARCH	TABLE	Accommodations	AS	A	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|		`--SEARCH	TABLE	Bedrooms	AS	B	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|--INTERSECT	USING	TEMP	B-TREE

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		`--SEARCH	TABLE	Review_scores	AS	Rev	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|--INTERSECT	USING	TEMP	B-TREE

|		|		|					|		|--SEARCH	TABLE	Cancellation_policies	AS	CP	USING	COVERING	INDEX	sqlite_autoindex_Cancellation_policies_1	(value=?)

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		`--SEARCH	TABLE	Rules_listing	AS	Ru	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					`--INTERSECT	USING	TEMP	B-TREE

|		|		|								|--SCAN	TABLE	Listings	AS	L

|		|		|								`--SEARCH	TABLE	Hosts	AS	H	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		`--SCAN	SUBQUERY	5

|		`--USE	TEMP	B-TREE	FOR	GROUP	BY

|--SCAN	SUBQUERY	2

`--USE	TEMP	B-TREE	FOR	ORDER	BY

And	indeed,	sql	starts	by	looking	at	the	Dates	first	and	then	everything	is	based	on	this.	Thus	trying	to	reduce	the	size	of	the	number	of

Dates	sql	reads	may	cut	down	drastically	the	runtime.	Moreover,	sql	does	a	full	scan	of	the	table	which	is	really	the	worst	scenario	when

you	have	a	big	table.

Because	of	the	range	search	we,	of	course,	tried	using	a	clustered	index	on		date	.

In	sqlite,	we	unfortunately	cannot	create	a	clustered	index	because	sqlite	uses	the	ROWID	and	doesn't	support	sorting	the	table	differently.

However,	we	can	create	a	Table	without	ROWID	which	essentially	creates	a	clustered	index	on	the	primary	key	of	the	table.	More	info	at

https://sqlite.org/withoutrowid.html

Thus	we	changed	the	Dates	table	to	Dates_clustered	and	it	now	has	the	following	create	statement:

CREATE	TABLE	Dates_clustered(date_id	INTEGER	NOT	NULL,	list_id	INTEGER	NOT	NULL,	date	DATE,	availability	INTEGE

R,	price	FLOAT,	primary	key(date,	date_id),	foreign	key(list_id)	references	Listings)	without	ROWID;

The	table	doesn't	have	a	ROWID	and	we	add	the		date		attribute	to	the	primary	key	such	that	the	Dates	are	first	sorted	on		date	,

extending	the	primary	key	doesn't	change	the	uniqueness	of	the	key.

Now,	the	same	query	but	with	Dates_clustered	instead	of	Dates	(which	is	essentially	the	same	table,	we	deleted	the	Dates	table)	gives	us

the	following	query	plan:

QUERY	PLAN

|--CO-ROUTINE	2

|		|--SEARCH	TABLE	Dates_clustered	AS	D	USING	PRIMARY	KEY	(date>?	AND	date<?)

|		|--LIST	SUBQUERY	1

|		|		|--CO-ROUTINE	5

|		|		|		`--COMPOUND	QUERY

|		|		|					|--LEFT-MOST	SUBQUERY

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|		`--SEARCH	TABLE	Cities	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|--INTERSECT	USING	TEMP	B-TREE

|		|		|					|		|--SCAN	TABLE	Accommodations	AS	A	USING	INDEX	sqlite_autoindex_Accommodations_2

|		|		|					|		|--SEARCH	TABLE	Bedrooms	AS	B	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|		`--SEARCH	TABLE	Listings	AS	L	USING	AUTOMATIC	COVERING	INDEX	(acc_id=?)

|		|		|					|--INTERSECT	USING	TEMP	B-TREE

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		`--SEARCH	TABLE	Review_scores	AS	Rev	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					|--INTERSECT	USING	TEMP	B-TREE

|		|		|					|		|--SEARCH	TABLE	Cancellation_policies	AS	CP	USING	COVERING	INDEX	sqlite_autoindex_Cancellation_policies_1	(value=?)

|		|		|					|		|--SCAN	TABLE	Listings	AS	L

|		|		|					|		`--SEARCH	TABLE	Rules_listing	AS	Ru	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		|					`--INTERSECT	USING	TEMP	B-TREE

|		|		|								|--SCAN	TABLE	Listings	AS	L

|		|		|								`--SEARCH	TABLE	Hosts	AS	H	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		`--SCAN	SUBQUERY	5

|		`--USE	TEMP	B-TREE	FOR	GROUP	BY

|--SCAN	SUBQUERY	2

`--USE	TEMP	B-TREE	FOR	ORDER	BY

As	we	can	see,	sql	now	searches	the	Dates	instead	of	scanning	it,	using	the	primary	key		date		which	is	exactly	what	we	wanted.

The	execution	time	is	now	428	ms!

We	went	from	1931	ms	to	428	ms,	which	is	a	~4.5	speedup.

Query	11

This	query	took	2535	ms	and	has	the	following	code:

drop	view	if	exists	query_11_available_listings_2018;

create	view	query_11_available_listings_2018	as

Select	distinct	L.id,	L.location_id

from	Listings	L	inner	join	Dates_clustered	D	on	L.id	=	D.list_id

where	D.date	>=	"2018-01-01"	and	D.date	<=	"2018-12-31"	and	D.availability	=	1;

Select	C.country_name

from	Countries	C

Where	(Select	COUNT(L.id)

from	query_11_available_listings_2018	L	inner	join	Locations	Loc	on	L.location_id	=	Loc.loc_id	inner	join	Count

ries	C	on	Loc.country_id	=	C.country_id)	>=	(Select	COUNT(L.id)

	 from	Listings	L	inner	join	Locations	Loc	on	L.location_id	=	Loc.loc_id	inner	join	Countries	C	on	Loc.co

untry_id	=	C.country_id)/5;

As	we	can	see	there	once	again	is	filter	based	on	the	range	of	the	dates.	It's	a	bigger	ranger,	all	of	the	year	2018,	but	in	our	data	most	of	the

dates	are	in	2019	so	it	still	is	a	big	filter.	Here	is	its	query	plan:

QUERY	PLAN

|--SCAN	TABLE	Countries	AS	C

|--SCALAR	SUBQUERY	1

|		|--MATERIALIZE	1

|		|		|--SCAN	TABLE	Listings	AS	L

|		|		`--SEARCH	TABLE	Dates	AS	D	USING	AUTOMATIC	PARTIAL	COVERING	INDEX	(availability=?	AND	list_id=?)

|		|--SCAN	TABLE	Locations	AS	Loc

|		|--SEARCH	TABLE	Countries	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		`--SEARCH	SUBQUERY	1	AS	L	USING	AUTOMATIC	COVERING	INDEX	(location_id=?)

`--SCALAR	SUBQUERY	2

			|--SCAN	TABLE	Listings	AS	L

			|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

			`--SEARCH	TABLE	Countries	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

Sql	uses	some	automatic	index	on	availability	and	list_id,	trying	to	optimize	the	Dates	read	but	the	query	is	still	pretty	slow	and	we	thought

the	Dates	probably	was	the	biggest	bottleneck	here.	So	this	automatic	index	probably	isn't	the	best.

We	followed	the	same	reasoning	as	for	query	4,	we	wanted	to	sort	the	Dates	such	that	it	only	checks	the	Dates	that	are	in	2018,	while

never	looking	at	any	2019	date.	We	once	again	need	a	clustered	index.	Since	we	already	have	a	clustered	index	on	dates	we	used	the

same	one	as	for	query	4	to	optimize	this	one.	Which	gives	us	the	following	query	plan:

QUERY	PLAN

|--SCAN	TABLE	Countries	AS	C

|--SCALAR	SUBQUERY	1

|		|--MATERIALIZE	1

|		|		|--SEARCH	TABLE	Dates_clustered	AS	D	USING	PRIMARY	KEY	(date>?	AND	date<?)

|		|		|--SEARCH	TABLE	Listings	AS	L	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		|		`--USE	TEMP	B-TREE	FOR	DISTINCT

|		|--SCAN	SUBQUERY	1	AS	L

|		|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|		`--SEARCH	TABLE	Countries	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

`--SCALAR	SUBQUERY	2

			|--SCAN	TABLE	Listings	AS	L

			|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

			`--SEARCH	TABLE	Countries	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

Sql	now	uses	our	index	on	date,	great!	But	what	about	the	runtime?

It	previously	took	2535	ms	to	execute	the	query	and	now	it	only	takes	423	ms,	almost	a	x6	speedup!

Query	1

This	query	took	61	ms	to	execute,	so	it	clearly	isn't	the	longest	running	query	but	we	thought	it	could	be	interesting	to	optimize	a	smaller

one.	This	is	its	code:

Select	C.name,	count(C.name)

From	Listings	L	Inner	Join	Accommodations	A	on	A.acc_id	=	L.acc_id

Inner	Join	Locations	Loc	on	Loc.loc_id	=	L.location_id

	 Inner	Join	Cities	C	on	C.city_id	=	Loc.city_id

	 Where	square_feet	is	not	null

	 Group	by	C.name

	 Order	by	C.name;

Here	is	the	query	plan:

QUERY	PLAN

|--SCAN	TABLE	Listings	AS	L

|--SEARCH	TABLE	Accommodations	AS	A	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|--SEARCH	TABLE	Cities	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

`--USE	TEMP	B-TREE	FOR	GROUP	BY

Due	to	inner	join,	sql	searches	with	rowid

We	noticed	that	the	output	contains	very	few	results	->	there	are	very	few	people	who	declared	the	area	of	their	property	in	square	feet.	So

maybe	we	can	use	this	information	and	create	an	index	on	square_feet	to	access	Accommodations with	no	square_feet	more	quickly.	We

tried	using	a	unclustered	index	but	it	didn't	improve	run	time,	we	then	wanted	to	try	a	clustered	index	on	square_feet.	Because	of	sqlite	we

have	to	put	the	clustered	indexed	attribute	in	the	primary	key	but	right	now	square_feet	is	nullable	and	thus	cannot	be	a	primary	key.	We

still	wanted	to	try	this	idea,	so	we	changed	the	Accommodations	table	such	that	square_feet	is	nullable	and	we	assume	that		square_feet

=0	=>	square_feet=NULL	.	We	now	can	create	a	clustered	index	on	square_feet.	Here	is	the	new	declaration	of	the	table:

CREATE	TABLE	Accommodations(acc_id	INTEGER	NOT	NULL,	access	VARCHAR(100),	property_type_id	INTEGER	NOT	NULL,	ro

om_type_id	INTEGER	NOT	NULL,	accommodates	INTEGER,	bathrooms	INTEGER,	bedroom_id	INTEGER	NOT	NULL,	square_feet	

INTEGER	NOT	NULL,	primary	key(square_feet,	acc_id),	foreign	key(property_type_id)	references	Property_types,	fo

reign	key(room_type_id)	references	Room_types,	foreign	key(bedroom_id)	references	Bedrooms,	unique(access,	prop

erty_type_id,	room_type_id,	accommodates,	bathrooms,	bedroom_id,	square_feet))	without	ROWID;

In	short,	it	no	longer	has	ROWID,	square_feet	is	part	of	the	primary	key	and	is	now		NOT	NULL	.	But	how	is	the	query	plan	now?

QUERY	PLAN

|--SEARCH	TABLE	Accommodations	AS	A	USING	PRIMARY	KEY	(square_feet>?)

|--SEARCH	TABLE	Listings	AS	L	USING	AUTOMATIC	COVERING	INDEX	(acc_id=?)

|--SEARCH	TABLE	Locations	AS	Loc	USING	INTEGER	PRIMARY	KEY	(rowid=?)

|--SEARCH	TABLE	Cities	AS	C	USING	INTEGER	PRIMARY	KEY	(rowid=?)

`--USE	TEMP	B-TREE	FOR	GROUP	BY

Great,	sql	uses	it	to	find	square_feet	>	0,	i.e.	square_feet	that	weren't	NULL.	But	what	about	the	run	time?	We	went	from	61	ms	to	32	ms	->

~2x	speedup.	This	isn't	as	good	but	this	was	to	be	expected	because	the	run	time	is	smaller	thus	it's	less	consistent	relatively	and	the	index

has	less	of	an	impact	because	the	tables	are	smaller.

Graphical	Interface

Concerning	the	graphical	interface,	it	is	divided	into	4	tabs	:	Search,	Predefined	Queries,	Insertion	and	Deletion.	The	user

can	navigate	through	the	tabs	in	order	to	interact	with	the	tables	in	the	database,	i.e	either	modify	them	or	just

look	something	up.

Search

In	the	search	tab	the	user	can	choose	a	table	and	enter	a	value.	It	will	search	among	every	columns	(element	of	the	schema)

in	the	table	and	print	all	the	lines	that	have	at	least	one	element	that	matches	the	searched	pattern.

Predefined	Queries	with	Parameters

Here	the	user	can	choose	among	multiple	predefined	queries	and	tweak	some	of	them.	For	instance,	for	the	Q2.1,	one	can	select

the	number	of	bedrooms	for	the	average	that	the	query	computes.

Insertion

In	the	insertion	tab,	one	can	select	a	table	and	insert	an	element	following	the	syntax	requirements	on	the	right.

Deletion

In	the	deletion	tab,	one	can	select	a	table	and	delete	an	element	according	to	its	primary	key	(id).

