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Assignement 4 - MulArch 

1) We implemented GPU_array_process with the 5 steps explained in the lecture 10 of the 

course that is: 

- allocate memory on the GPU 

- Copy data from CPU to GPU memory 

- Invoke the GPU kernel 

- computation on GPU 

- copying data back to the CPU’s memory and deallocate memory on GPU 

 

The GPU kernel implementation is similar to the CPU’s implementation. However, the big 

difference is in the use of blocks. We spent a lot of time trying to figure out which size and 

shape were optimal. 

We began with a single block and a lot of threads. We didn’t expect a great performance but 

the goal was to make the program works. However, we had to be aware of the fact that 

there is a limitation in the number of threads per blocks (it’s 1024 threads per blocks on the 

Tesla K40). So, this first implementation was not sufficient for the program because it can 

only run up to a 32x32 square. 

Then, we tried to have square blocks with 1024 threads per block. The goal was to use the 

GPU at its maximum capacity and to be able to run the code on bigger arrays. This 

implementation worked for all sizes tested in this assignment so up to 1000x1000 square. 

However, we had bad performance and we can do much better. The 1000x1000 array on 

10’000 iterations took 17.87 seconds. 

 

This bad performance is probably due to bad grid design and bad caching results. It didn’t 

exploit the cache well and the fact that a warp will use the same data. We have to take care 

of false sharing, and in this design there is a lot since many blocks write on the same line. 

 

To solve that, we then decided to give one row per block because we thought writing an 

entire row per block would be much better and in fact closer to the CPU implementation we 

did. The performance was significantly better. It took 2.472 seconds to run the 1000x1000 

array on 10’000 iterations. 

 

We then had a good design that is even faster than the optimized CPU version but we 

wanted to try out a couple more optimizations. 

 

We then tried to make each block do multiple lines instead of just one. We thought it could 

be a bit faster by caching the inputs the lines will need. We tried with 2 and 4 lines per block 

but in fact the performance was scarily similar. With a couple of testing the execution time 

was virtually the same, we couldn’t see any speedup or slowdown.  

 

We wanted to try one last thing, in our implementation we copy the input and output of the 

CPU to the GPU and then copy back the GPU output to the CPU, so the MemCpy from Host to 

Device takes twice as long. However, copying these arrays is not really mandatory we know 

their content and it’s easy they are empty with ‘1000’ in the middle. Since we initialize the 

arrays with 0’s we added a kernel to put 1000’s at the center of the arrays and call this 

instead of copying the content. This does improve the execution time! The execution and 
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copy device to host doesn’t change but the copy from host to device is significantly faster, 

especially with big arrays. With 1000x1000 array we go from 4.591ms to 0.08109ms. 

2)  

1. Simple square blocks with 1024 threads -> one line per block: Execution time went from 

17.87 seconds to 2.472 seconds on 1000x1000 array for 10’000 iterations. So this is our 

major optimization and it improves better everywhere so we don’t think it’s really useful 

to add graphs for that. 

2. Each block does 2/4 lines. We saw virtually no improvement or worse performance so we 

didn’t use this change. 

3. Removing MemCpy Host to Device and replace it with kernel. This speeds up the host to 

device copy of array. The computation and device to host remain virtually the same: 
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We can see major improvement in the execution time of the copy from host to device 

due to the fact that we improved something that took linear time on the size of the input 

to something that takes constant time. However, because of Amdahl’s Law the overall 

execution time doesn’t change so drastically because most of the time is spent in the 

computation phase. The overall execution went from 2.472 seconds to 2.468 seconds on 

the 1000x1000 array for 10’000 iterations. So we still get a speedup! 

 

3) a) We decided to put each <iteration, length> combinations in a different graph since the 

time’s difference is really big between small inputs like <10, 100> and big inputs like <1’000, 

10’000>: 
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4) 

We can see that the baseline CPU is better with very small inputs and iterations, but the 

optimized CPU quickly becomes better and for big inputs the GPU performs even better that 

the optimized CPU. This is due to the fact that the parallel CPU has some overhead and the 

GPU has a LOT of overhead so calling the GPU for a small work isn’t useful at all. To check 

that, we can see that if we sum the GPU execution time of computing and copying array we 

are very far from the complete execution time it took, due to pre and post processing of 

creating arrays on the GPU, initializing them to 0, free them etc… However, when the 

overhead starts becoming minor compared to the computation phase the GPU really stands 

up and performs better that CPU. This is why even with the 1000x1000 array on 100 

iterations the GPU is still worse, it’s because there isn’t much computation to do, so because 

of Amdahl’s law the % of time the overhead take hugely impacts the overall performance. 

However, with 10’000 iterations the computation takes a bit of time and now the GPU is 

faster. So as we saw in class the GPU is indeed really good when there is a lot of similar 

computation to do. 

About the detailed execution times of the GPU, we can see that thanks to our optimization 

the host to device copy takes about constant time, the device to host of the output takes 

some time that’s close to the size of the array. However it’s not completely linear, for 

example on the 1000x1000 array with 100 iterations it takes 2.189 ms and with 10’000 2.517 

ms. We think this is due to the fact that with 100 iterations the array will be mostly empty so 

the copy is probably better optimized if many of the values of the array are the same. For 

computation time, we can see that it depends on the number of iterations and on the size of 

the array. This is normal because the more iteration the more we have to run the kernel so it 

takes more time. And the bigger the array the more blocks we have, and we of course have 

many more blocks that we have SMs so it takes longer to run. (We have one block per line). 
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