
Earthquake Detection from Seismological Data
Lucien Michaël Iseli, Florian Maxime Charles Ravasi and Jules Eliot Gottraux

Master of Data Science, EPFL, Switzerland

I. INTRODUCTION

In seismology, the detection of earthquakes is a pretty
active research. The detection of severe earthquake, those that
make your house tremble and are actually dangerous, is not a
particularly tricky task but when talking about earthquakes of
small magnitude that’s a different story. In fact, as of today the
detection and classification of earthquakes is still done by hand
by specialists. That is they manually inspect the measurements
taken by sensors to produce the catalogs, the tables containing
the earthquakes’s informations. This process is error-prone and
tedious, this is why we try to address this issue in this project.
We’ll use data from sensors that capture the vibration present
in the earth, the same data that specialists in detection use, to
create a machine learning model able to detect if an earthquake
has happened. Most of the work we will present will be
prior to the creation and optimization of the machine learning
algorithm. That is we spent most of our time preparing the
data and doing featuring engineering. As we will see, this task
revealed to be very difficult and one would need more time
and substantial expertise to obtain satisfying performances for
small earthquake detection. However by simplifying the task
we managed to get acceptable result. In fact this work is
inspired by a research [1] conducted by three researchers, they
worked hard to achieve that using neural networks and clever
memory management.

II. DATASET CHARACTERISTICS

We get our data using the ObsPy library [2]. ObsPy grants
us access to stations, which have sensors that record the
seismological activity over time on different channels. Those
sensors constantly record the vibration of the earth at their
location. This include seismic waves which are the waves of
energy released when a seism occur nearby. This data is thus
one dimensional and filled with noise as it is a completely raw
measure, it is a giant time series containing the amplitude of
waves captured by the sensor. It has the information of the
seism and earthquake but this information is aggregated with
all the vibration happening near the sensor. The goal will be
to create, from this time series, meaningful features for the
model containing sufficient information to classify a certain
window of time. We’ll thus fix the duration of a time window,
for example one minute, then compute features on this time
window and feed these features to the machine learning
model. We also compute the fourier transform of the time
window because an earthquake normally has a lot of different
frequencies including the high ones. We heuristically noticed
that in the fourier transforms low frequencies were always
present whether it was noise or an earthquake. Therefore, in

order to characterise the earthquakes we for example take the
mean and the standard deviation starting from a threshold.

Fig. 1. 10 minute of data example, no earthquake

So the basis for the features is this time series, for the
labels we use a hand-made catalog of earthquake that contains,
among other properties, the location, magnitude and time of
the earthquake.

Before diving into the machine learning model construction,
we have to take care of several difficulties inherent in the
dataset.
First the data collection, after having chosen the location,
station and channel from which we want to get the time series
we have to download it and store that to a usable format for the
next steps. The frequency of the sensors is 100 data point per
second, so the amount of data increases quite quickly. Then,
the data has holes in it, since it is sometimes missing for some
period. Those holes are not regular and unpredictable, so we
have to take care of them with caution.

Fig. 2. Example of missing values in the dataset

We already mentioned that the data obtained from ObsPy
is very noisy, we want to emphasize this and as we will
see in examples, some earthquakes and non-earthquakes are
undistinguishable for the untrained eye. The catalog is noisy
in a sense as well, since the time series are parsed by humans
and thus some earthquakes are missed and as the magnitude
decreases the number of missed earthquake increases, being
the majority for small magnitudes. Another difficulty in the
catalog is the delay that is induced by the difference of location
between the detection of the earthquake and the location of



our station. All the catalog has to be calibrated to ensure that
the time of the earthquake corresponds to a peak in our time
series. However, the speed of propagation of an earthquake
isn’t constant. The so-called p-waves’ speed of an earthquake
varies quite a bit, depending on the rocks it travels through for
example. This implies that it is impossible to label perfectly
with an automatically method such as ours.
To better see what characterise an earthquake we show three
examples, one of an obvious and two more difficult to detect
earthquakes.

Fig. 3. Obvious earthquake example, magnitude of 3.5

Fig. 4. Example of earthquake with multiple peaks, magnitude of 2.1

Fig. 5. Example of earthquake with constant variation, magnitude of 2.2

We can see what characterise the easy part of the earthquake
in figure 3: A big step at first followed by a slower decrease.
During this period, a great amount of different frequencies,
including high frequencies are present. The first one is a good
example of the discretization problem explained in section IV.
It is very difficult to determine which of these peaks is part of
the earthquake. The see that it is important to keep in mind
that they range over more than 5 minutes. This is big as taking
a window of several minutes will most likely not be optimal.
The last one shows one of many example of an earthquake
that is really difficult to detect. It is not at all the worst, this
one has a magnitude of 2.2 so you can imagine how difficult
it is to detect earthquake several times less powerful. These
less detectable earthquake are not rare,ones with a magnitudes
of less than 1.5 composes a quarter of our dataset if we take
time windows of 1 minute

III. DATA PRE-PROCESSING

We first have to correct the anomalies in the data: the delay
induced by the physical distance separating our sensors and
the seisms’ location and the temporal holes.

First of all, for the missing data, we take care of that when
loading it. Whenever a time series has is missing a chunk of
its curve, we interpolate it with gaussian noise. This way, it
will just be considered as a moment where nothing interesting
happened and thus should not worsen the performance as it is
quite representative to most of the dataset where no earthquake
has happened.

Moreover, as aformentioned, the station we choose records
activity and label it with the current time which does not
correspond to the exact time at which the earthquake happened
according to the catalog we use. Therefore we convert latitude,
longitude and elevation to a cartesian coordinate system in
order to compute the distance easily. We do this using ECEF
coordinates[3]
Now that we have the distance, we manually find the start time
of some earthquake and see the time difference. With a few
time differences and distances we computed the average speed
of propagation of earthquake/p-waves and got 5676.611m

s
which is very close to what they found in [4]. We use that
measure in order to automatically label the data. We show an
example of the delay we add in figure 6. Here, and it is not the
furthest earthquake, the delay is already of 10 seconds which
is significant for a time window a one minute.

Fig. 6. Delay of catalog in green, re-calibrated in red

IV. LABELING OF THE DATA

Since the dataset lives in a continuous space, we have
to discretize it. We have to choose time windows that will
be classified as earthquake or not earthquake. The choice of
the length of the time window is crucial and it is hard to
predict what would be a good choice. Also, that gives rise to
a fundamental question for the creation of the labels: when
does an earthquake end? It is possible, in fact rather probable
depending on the length of the discretization process, that an
earthquake spans over multiple time windows thus knowing
the duration of the earthquake would permit to overcome this
issue. This is important, because not being able to accurately
and correctly label our data will of course be disastrous for
the machine learning model. Unfortunately, the duration of an
earthquake is an open question in geology, the only option
simple enough is to label as earthquake only the window that



contains the moment of an earthquake.
The problem with this approach is illustrated in figure 7. In
the catalog the earthquake starts at T1 and we can see that the
earthquake indeed triggers a big instant augmentation in the
variation of the amplitude, that is typical to the earthquakes
that are quite easy to classify. The problem here is that when
discretizing the time series in windows, we will likely not
have a window starting at T1. Let’s say that our partitioning
gives a time window that ends at T2. Therefore, we would
label the time window containing the start of the earthquake,
i.e T1, as an earthquake and hence the one starting at T2 as
noise. However, the latter is the one containing most of the
earthquake. This labeling is incorrect, we want time windows
with such patterns labeled as earthquake because the features
have been created to emphasize precisely this kind of pattern.
So if the second time window is incorrectly labeled, the
negative impact on the algorithm’s parameter will be very
high. The same problem exists for the testing phase, where
for each earthquake the adjacent time windows have a high
chance of being mislabeled.

Fig. 7. Illustration of the problem of time window labeling

V. FEATURE CREATION

From that seismic waves we have to choose what processing
and transformations will have to be done to be able to feed
the machine learning algorithm. We have two main options:
leave it as it is and opt for an algorithm such as convolutional
neural networks, the approach they took in ConvNetQuake
(the paper [1] that inspired this project), or perform some
feature engineering by hand to be able to use some more
standard algorithm, which is the approach we chose. So,
rather than having a gigantic input dimension we choose to
compress it in a smart way, creating meaningful features for
the algorithm. For instance, if we took a time window of 10
seconds, this compression is on the order of 100 if we create
ten features. This permits to accelerate the training process
and thus allow to span more time or take more channel.

There are a few characteristics inherent to earthquakes
that we try to capture through our features: they have high
frequencies, high amplitudes, quick acceleration and a lot of
different frequencies. We begin by adding simple measures
that directly come to mind:

• Standard deviation of the signal

• Maximum and minimum of the signal
• Maximum difference between two adjacent points
• Maximum and minimum of the shifted signal, shifted

meaning the we substract the mean
• Number of points that are above half of the maximum of

the shifted signal, which corresponds to the number of
points with high values

• Number of points that are below half of the minimum of
the shifted signal, which corresponds to the number of
points with low values

Those features are very simple and may not add much
information useful to the model. However we think that
the information they add is still positive for what we want
to model, the standard deviation, the maximums and the
minimums informs us about how variable and powerful is the
signal. Earthquakes tends to span much more amplitude and
be more unpredictable, hence the standard deviation. The last
two features could be useful to prevent false positive.. Indeed,
if a noise jump to some high amplitude, it will most likely
not have a lot of values extreme values. Hence, if a period
containing noise span a lot of amplitude, those measures can
help counter this.
Now for the main features, the first one capture the speed
of variability of the signal, the power of the vibration ina
a sense. We compute the number of time that an abrupt
change appear in the signal. The second one is a weighted
between adjacent point weighted by the quiteness of the
signal before this moment. That way if a peak appear after
some quiet period it will capture that, typicall such as in the
figure 3. We also compute the fourier transform of the time
window because an earthquake normally has a lot of different
frequencies including the high ones. We heuristically noticed
that in the fourier transforms low frequencies were always
present whether it was noise or an earthquake. Therefore, in
order to characterise the earthquakes we for example take the
mean and the standard deviation starting from a threshold.

VI. MODEL SELECTION

We opted for KNN and RandomForest and describe here
our approach with both of them. The problem is that we
either tend to have a good precision but low recall or vice-
versa, so as shown on the plot below the best F-score we get
for both algorithms is quite low. Our training set comprises
approximately five months of time windows with 0.45% of
earthquakes (the majority being small ones), whereas the test
is about one month with 0.46% of earthquakes. It represents
861 earthquakes for the training set and 214 for the test set.
There are a few parameters that we tweak in order to get better
results. Concerning KNN there are two parameters, we change
the number of neighbours and we try to compensate the imbal-
ance of the classes by duplicating the earthquake datapoints.
Regarding the RandomForest there are three parameters that
have a positive influence on our model: the depth of the tree,
the number of trees and the weighting of the classes.



Measure Random Forest KNN

Accuracy 0.97 0.99
Precision 0.06 0.098

Recall 0.38 0.08
F1-score 0.1 0.08

Since little earthquakes do not seem to really trigger our
features, we try to simplify our model taking only earthquakes
that have at least 2 of magnitude. Here it represents 614
earthquake for the training set and 138 for the test set.

Measure Random Forest

Accuracy 0.99
Precision 0.23

Recall 0.25
F1-score 0.24

We see that we get a far better results. So we lost a few
earthquakes but really improved our score. Let’s see if we
can improve it even more taking earthquakes that have at
least three of magnitude. Here the training set contains 57
earthquakes and the test set 6 of them.

Measure Random Forest

Accuracy 1
Precision 1

Recall 0.33
F1-score 0.5

The F1-score we get is even better than last time, but our
recall is still quite low. We see than the magnitude requirement
seems to simplify our model enough so that we can almost get
a reasonable score. The problem is that the trade-off with the
number of earthquakes in our test and training set is really
present. Indeed, there are only a few earthquakes left and thus
the variance of the result is higher. Indeed, the results we
show here represent the best we can get and the higher the
magnitude the less the number of earthquakes and thus the
higher the variance of the F1-score we get. In order to have a
high recall, we can make the weights bigger but the problem
is that we get a very low precision in that case.

VII. CONCLUSION

That project did not seem hard at first, but we went
through many difficulties. First, we had to manually solve
the location dependency which is imprecise given that the
speed of propagation is variable. Secondly, earthquakes in our
data do not always trigger features we expect to characterise
them since signals from stations are very noisy. Additionally,
automatically splitting the original time series yields chunks
that can be mislabled because we only know the start of a
seism and since our dataset has a strong uneven proportion
of earthquake time windows compared to noisy ones, things
can quickly go awry. Then, the feature engineering was not
trivial and it took a great amount of time to come up with
good approaches that capture the essence of earthquakes.
Thus, after all the pre-processing and feature engineering we

did not have that much time left to devote to the training
and the model choosing. We did not manage to train a good
model for the following reasons: our features did not activate
perfectly, our labels were hugely imbalanced and windows
were often mislabled. Our first goal was to train a model that
detects any earthquake whatever their magnitude. However,
small earthquakes are too hard to detect, partly because of the
noise, so we decided to focus on those whose magnitude is
more than 3 on the Richter scale. Labeling those earthquake
yield better results, going from an almost inexistent F-score
to 0.45, which gives us confidence in our approach.

VIII. FURTHER IMPROVEMENTS

There are a few things that we could improve in order
to have a better model. The first one is simply to compute
better features. Indeed, with better knowledge in geology,
and more precisely seismic waves, one could come up with
features that captures more how earthquakes’ signal behave.
Secondly, one could try to come up with a better way to
choose time windows that could try to take into account
when a seism starts so that it does includes at least a certain
percentage of what comes after. Then, in order to have more
diversity in our dataset, we could have made use of more than
one station; it could have helped with some anomalies that
may occur on stations. The more stations we take the less
likey we are that they suffer from the same anomalies at the
same time; however this greatly increases data size. Detecting
low-magnitude earthquakes is a very difficult task, even for
experts, but there aren’t enough high-magnitude earthquakes
to teach the model anything. Indeed, Oklahoma doesn’t have
a lot of noticeable earthquakes, thus choosing another location
could have helped to have a model that is able to detect big
earthquakes (big meaning noticeable for a human). To better
clean the data we could have also computed the p-wave speed
in a more involved manner; we could have for example used
ground stucture data to better approximate the speedi, thus
having a speed that is dependent on the earthquake location.
This could have helped since for the majority of earthquakes
our greedy approach works very well but some earthquakes’s
times are still not perfect. Given the imbalancement of the data,
we could have tried to undersample it, helping the algorithm
to more adapt its parameter from the earthquake class. We
weight the loss function in the algorithm but that can be a
better way of handling this imbalance.

REFERENCES

[1] Convolutional neural network for earthquake detection and location, 14
February 2018.
https://advances.sciencemag.org/content/4/2/e1700578

[2] ObsPy: python library to collect seismological data.
https://docs.obspy.org/

[3] J. Zhu, (1994), Conversion of Earth-centered Earth-fixed coordinates to
geodetic coordinates.
https://ieeexplore.ieee.org/abstract/document/303772/

[4] Guy T. Kuster and M. Nafi Toksöz, (1974), ”Velocity and Attenuation
of Seismic Waves in two-phase Media: Part I. Theoretical Formulations,”
geophysics 39: 587-606.
https://library.seg.org/doi/abs/10.1190/1.1440450


	Introduction
	Dataset Characteristics
	Data pre-processing
	Labeling of the Data
	Feature Creation
	Model Selection
	Conclusion
	Further improvements
	References

