=PrL

Semester Project Report

Advancing Algebraic Reasoning for Scala

Professor:
Author: Viktor KUNCAK
Lucien Michaél ISELI Supervisor:

Romain RUETSCHI

June 15, 2019

Advancing Algebraic Reasoning for Scala

Lucien Michaél Iseli

June 15th, 2019

Contents
Introduction

Laws
Comparison L
Equality
Partialorder o
Total order
Example: Total order
Example: Sorting oo
Semigroups and monoids Lo
Semigroup e
Monoido
Examples

Folding
Lists e
ConcRopes e

Case study: word count
Results. o

Extensions to ConcRope
Faster multiset
Conclusion

Further work
References

Appendix
Nat e
Proof foldLeft == foldRight
Proof ConcRopeFromList
Bag union, SmallBag - BigBag

0 d] N O OOtk WD N [\V]

© oo

14
14

15

17

20

20

Introduction

Stainless is a tool that verifies laws and properties statically for Scala code, it
supports a good chunk of functional Scala, however not everything is supported
yet. It has its own implementations of List, Set, Map, etc... The goal of this
project is to write code for Stainless, to have a bigger example project written
with Stainless while also extending its library and enhancing it. The goal is to
define algebraic structures and have a bigger project example inside Stainless, and
improving the library.

Laws

Comparison

The first laws we wanted to define were the ones used to compare objects to-
gether. In order to define comparison we have a hierarchical structure containing
Equality, Partial order and Total order. All these relations have mathe-
matical properties that must hold and Stainless is a good tool to verify such
things.

Equality

Mathematical equality is defined as an equivalence relation.! Thus any equality
relation must verify 3 properties:

o Reflexive:
Ve:x=ux
e Symmetric:
Ve,y:x =y < y==a
o Transitive:
Ve,y,z :x =yANy=2 — x =2

Then in stainless we can translate these 3 properties into 3 laws that will be
verified. Since classes in Stainless inherit laws, any user-defined equality relation
that extends this class will be verified by Stainless statically.

Thttps://en.wikipedia.org/wiki/Equality (mathematics)#Basic_ properties

https://en.wikipedia.org/wiki/Equality_(mathematics)#Basic_properties

abstract class Equality[A] {
def equv(x: A, y: A): Boolean

Claw

def law_reflexive equality(x: A) = {
eqv(x, x)

}

Claw

def law_symmetric_equality(x: A, y: A) = {
eqv(x, y) == equ(y, x)
}

QClaw
def law_transitive equality(x: A, y: A, z: A) = {
(equ(x, y) && eqv(y, z)) ==> eqv(x, z)
}
}

Given the above laws, to define a new Equality relation for any object it will be
sufficient to extend the Equality class by writing the eqv method and Stainless
will verify whether these relations hold true.

Partial order

Partial order, as the name implies, defines an ordering between elements however
it is partial. Thus some elements cannot be compared together, they are not the
same elements but none of them must go before the other. The order is defined by
the < relation. Partial order extends Equality in this hierarchy and must verify
3 properties:?

o Reflexive:
Ve:z <z

o Antisymmetry:
Ve,y:xe<yhy<z — x=y

o Transitivity:
Ve,y,z: e <yhy<z —= =<z

Which, in Stainless, translates to:

2https://en.wikipedia.org/wiki/Partially _ordered set#Formal definition

https://en.wikipedia.org/wiki/Partially_ordered_set#Formal_definition

abstract class PartialOrder[A] extends Equality[A] {
def lteqv(x: A, y: A): Boolean

@law

def law_reflexive partial order(x: A) = {
lteqv(x, x)

}

@law

def law_antisymmetric_partial order(x: A, y: A) = {
(1teqv(x, y) && ltequ(y, x)) ==> eqv(x, y)
}

@law
def law_transitive partial order(x: A, y: A, z: A) = {
(1teqv(x, y) && ltequ(y, z)) ==> ltequ(x, z)
}
}

Total order

Following the same design we can define Total order, which is basically Partial
order but all elements have to be comparable. Total order is also defined by the
< relation and since we extend Partial order we only have to add this property,
called the connex property:*

Ve,y:x<yVy<zw

Note that both x < y and y < = can be true which means, using the antisymmetric
property, that x = y.

Due to inheritance the class definition is small:

abstract class TotalOrder[A] extends PartialOrder[A] {
Qlaw
def law_connex_total_order(x: A, y: A) = {
ltequ(x, y) || lteqv(y, x)
}
}

Example: Total order

Here are two examples of verified implementations of Total order (which due to
inheritance also define both a verified Partial order and a verified Equality.
First BigInt:

3https://en.wikipedia.org/wiki/Total__order

https://en.wikipedia.org/wiki/Total_order

case class BigIntTotalOrder() extends TotalOrder [BigInt] {
def eqv(x: BigInt, y: BigInt): Boolean = {
X == y

def lteqv(x: BigInt, y: BigInt): Boolean = {
X <=y

In this example, Stainless manages to prove everything on its own because Stainless
has an inner implementation of BigInt and thus it knows many properties about
BigInts.

Second, Nat (Natural numbers, defined here):
The code is a bit too long to insert here but it can be found here.

This example is slightly more involved, as Stainless doesn’t manage to prove it
on its own but it’s still relatively easy. The only thing I helped with is making
Stainless use induction. For the 3 properties the only thing the proofs helpers do
is saying that the property holds for x = Succ(n) because it holds for n and then
Stainless does the rest. Here is one of the methods, as an example to show the
process:

def law_connex Nat(x: Nat, y: Nat): Boolean = {
(x <=y || y <= x) because {
(x, y) match {
case (Succ(n), Succ(m)) =>
assert(law_connex Nat(n, m))
check(x <=y || y <= x)
case _ => true
}
}
}.holds

I only tell Stainless that the property is true because it’s true for n and m and it
is enough. The other methods are very similar.

Example: Sorting

Now that we have total orders we can define something more meaningful that
uses them. I implemented an insertion sort and a merge sort, both verified (the
code is available here):

o Insertion sort®
e Merge sort®

thttps://github.com/Gorzen/stainless/blob/sorting-project /lucien/TotalOrderNat.scala
Shttps://github.com/Gorzen /stainless /blob /sorting-project /lucien /InsertionSort.scala
Shttps://github.com/Gorzen/stainless/blob/sorting-project /lucien/MergeSort.scala

https://github.com/Gorzen/stainless/blob/sorting-project/lucien/TotalOrderNat.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/InsertionSort.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/MergeSort.scala

The sort method has the following definition:

def sort[T](list: List[T])(implicit comparator: TotalOrder[T]): List[T] = {
// Implementation. ..

} ensuring { res =>
bag(list) == bag(res) &&
isSorted(res)

3

Since Bag is a multiset, bag(res) = bag(list) = res and list have exactly
the same content; same elements repeated the same number of times. Plus, we
have a postcondition that the list is sorted, thus ensuring that the returned list
has the same content and is sorted.

I had to help Stainless with the proofs a little bit but nothing too fancy, see the
code for further details. I had to put postconditions on different methods and
a few assertion to help Stainless but that’s it. One issue I had was that in my
first implementation merge sort had basically the same runtime as insertion sort.
The problem was that the functional List abstraction Scala has makes splitting
a List not efficient at all, O(n). Indeed, you have to traverse the list to split it
somewhere since it’s basically a linked list. However, after improving the splitting
and making sure that the proofs still hold, merge sort was eventually faster. You
can see some runtimes here.

Semigroups and monoids

Monoids define an interesting algebraic structure and will be essential in order to
define the fold method used in this case study.

Semigroup

Monoids are a subset of semigroups, thus following the same hierarchical structure
as the one used for comparison, I implemented SemiGroup and Monoid indepen-
dently.

Semigroups and monoids define a type and an operation that combines two
elements of the same type returning an element of the same type. It is a binary
operation. Semigroups must verify one property: assosciativity. The formal
definition can be found here.”

A semigroup is a set S and a function @ : S x .S — S that satisfies the assosciative
property:
Va,b,ce S: (a®b)@dc=a® (bDc)

As usual mathematical properties translate really smoothly to Scala/Stainless:

Thttps:/ /en.wikipedia.org/wiki/Semigroup# Definition

https://en.wikipedia.org/wiki/Semigroup#Definition

abstract class SemiGroup[A]{
def append(x: A, y: A): A

Claw
def law_associativity(x: A, y: A, z: A) = {
append(x, append(y, z)) == append(append(x, y), z)
}
+

Where append defines the binary operation .

Monoid

Monoids are semigroups, thus they are defined by a set and a binary operation.
However for a semigroup to be a monoid it must also satisfy some other properties.
Monoids have an empty element as well as left and right identity:®

deeS|VaeS:eba=ade=a

abstract class Monoid[A] extends SemiGroup[A]{
def empty: A

@law

def law_leftIdentity(x: A) = {
append(empty, x) ==

}

Claw
def law_rightIdentity(x: A) = {
append(x, empty) ==
}
}

Examples

I wrote some examples for BigInt, List and Option. As Stainless didn’t need
too much help the code doesn’t really need any further explanation. The code
can be found here:

 Biglnt, addition’

« Biglnt, multiplication'’

o List[A], concatenation'!

« Option[A], given a Monoid[A]"

8https://en.wikipedia.org/wiki/Monoid#Definition

9https://github.com/Gorzen /stainless/blob/sorting-project /lucien/MonoidBigInt.scala
Ohttps://github.com/Gorzen /stainless/blob /sorting-project /lucien/Monoid BigInt.scala
Hhttps://github.com/Gorzen/stainless/blob/sorting-project /lucien/MonoidList.scala
2https://github.com/Gorzen /stainless/blob /sorting-project /lucien/MonoidOption.scala

https://en.wikipedia.org/wiki/Monoid#Definition
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/MonoidBigInt.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/MonoidBigInt.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/MonoidList.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/MonoidOption.scala

Folding

Fold is a very important higher-order function in functional programming, it
combines every element of a list and outputs a result. It is useful because it is
very versatile and can be parallelized. Plus, it has interesting properties when it
is defined on monoids as we’ll see later on.

Lists

As said previously, monoids are really handy for folding operations and we will
need a fold operation. The fold on List is defined as such, using the Monoid we
defined earlier:

def fold[A](xs: List[A]) (implicit M: Monoid[A]): A = {
xs.foldLeft (M.empty) (M.append)
}

Here are the definitions of foldLeft and foldRight (defined on List[T]):

def foldLeft[R](z: R)(f: (R,T) => R): R = this match {
case Nil() => z
case Cons(h,t) => t.foldLeft(f(z,h)) (f)

+

def foldRight[R](z: R)(f: (T,R) => R): R = this match {
case Nil() => z
case Cons(h, t) => f(h, t.foldRight(z) (£f))

+

I added some basic checks to verify that this fold does what we expect (sum
elements correctly, etc). Plus, I proved a property that will be really handy and
is really interesting because it comes from the fact that we use monoids. It is
that foldLeft == foldRight. Why is it handy to go from foldLeft to foldRight?
Because Stainless is way better at reasoning about foldRight rather than foldLeft.
FoldRight simply calls itself on the list with one element less and then calls
the append function on it, foldLeft’s recursive call has two different parameters
including one on which induction doesn’t necessarily make sense. This makes
induction proofs way easier to write using foldRights.

The proof is interesting and required some thinking to write. Here it is (with base
cases omitted, you can look at them in the appendix here):

Case xs ==yl :: y2 :: ys = xs has > 2 elements.

xs. foldLe ft(M.empty)(M.append)
xs definition —
(yl ::y2 :ys).foldLe ft(M.empty)(M.append)
foldLeft definition —
(y2 :: ys).foldLe ft(M.append(M.empty, y1))(M.append)
left identity —
(y2 :: ys).foldLeft(yl)(M.append)
foldLeft definition —
ys.foldLe ft(M.append(yl,y2))(M.append)
left identity —
ys.foldLe ft(M.append(M.empty, M.append(yl,y2)))(M.append)
foldLeft definition —
(M.append(yl,y2) :: ys).foldLeft(M.empty)(M.append)
induction hypothesis, since the size of the list is smaller —
(M.append(yl,y2) :: ys).foldRight(M.empty)(M.append)
foldRight definition —
M .append(M.append(yl,y2), ys. foldRight(M.empty)(M.append)
assosciativity —
M .append(yl, M.append(y2, ys. foldRight(M.empty)(M.append)
foldRight definition —
M .append(yl, (y2 :: ys). foldRight(M.empty)(M.append))
foldRight definition —
(yl 2 y2 2 ys). foldRight(M.empty)(M.append)
xs definition —
xs. foldRight(M.empty)(M.append)

=W NN =

= =~~~/
= o © 0 N O Ot

—_
N\

e
S Ot

R DN DD DD == —
= W N = O O w
NN N NN NS NP NN NN N N NI NN N2

e e e e e e e s R e N N T
[\ —
Ot —~J

Very nice, now we can easily translate it to Scala code and Stainless validates
it! Notice that for the proof to work we need assosciativity + identity, the only
properties monoids have; nothing more, nothing less.

ConcRopes

Now we need to define a folding method on ConcRope when given a monoid in
order to compare it to List in our case study.

Reminder:

ConcRope is a tree-like structure composed of 4 different nodes'®:

13http://aleksandar-prokopec.com /resources/docs/lcpe-cone-trees.pdf

http://aleksandar-prokopec.com/resources/docs/lcpc-conc-trees.pdf

case class Empty[T] () extends Conc[T]

case class Single[T] (x: T) extends Conc[T]

case class CC[T] (left: Conc[T], right: Conc[T]) extends Conc[T]
case class Append[T] (left: Conc[T], right: Conc[T]) extends Conc[T]

The tree is balanced, the level difference between the two children cannot be
greater than 1. Append is a special node that provides an amortized O(1) append
and prepend methods. CC is the usual tree object.

Thus we can define the fold method in the following way:

def foldSequential[A] (xs: Conc[A]) (implicit M: Monoid[A]): A = {
xs match {
case Empty() => M.empty
case Single(x) => x // Thanks to left identity we can simply return x
case CC(left, right) =>
M.append(foldSequential (left), foldSequential(right))
case Append(left, right) =>
M.append(foldSequential(left), foldSequential(right))
}
}

This method is sequential as the name implies, and ConcRopes are designed to be
easily and efficiently parallelized. Indeed this method is easily parallelized. We
compute the fold of both children and then append them together but we can
compute both folds in parallel since they are independent and then append the
results.

Now, we need to verify that this fold method indeed does what we expect. To do
this I proved:

def proof[A] (xs: Conc[A]): Boolean = {
fold(xs.toList) == fold(xs)
}.holds

Namely, folding the ConcRope or the List defined by the ConcRope yields the
same result.

This proof is a little long you can take a look at it here'*. But I think it deserves
some explanation, so here is an overview of how it works. The proof is yet again
an inductive one, we prove base cases (Empty and Single) and then for CC and
Append we roughly do the following:

Yhttps://github.com/Gorzen /stainless /blob /sorting-project /lucien /FoldMapConcRope.
scala

10

https://github.com/Gorzen/stainless/blob/sorting-project/lucien/FoldMapConcRope.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/FoldMapConcRope.scala

xs = CC(left, right) || Append(left, right)

// Want to prove:
fold(xs) == fold(xs.tolList)

//Induction hypothestis
fold(left) == fold(left.toList)
fold(right) == fold(right.toList)

xs.tolist == left.tolist ++ right.tolist

fold(xs) == M.append(fold(left), fold(right))
== M.append(fold(left.toList), fold(right.toList))

// ==> need to prove:
M.append(fold(left.toList), fold(right.tolList)) ==
fold(left.toList ++ right.toList)

Now we need to prove this property. Its proof is interesting and uses the proof I
showed earlier (foldLeft == foldRight). Thus, I thought it could be insightful to
add it here. I wrote it in latex but once again the mapping from mathematical
reasoning to Stainless is pretty straightforward.

We want to show:
M.append(fold(xs), fold(ys)) == fold(xs ++ ys)

Note: This means that the function fold: List[A] — A is an homomorphism for
the monoid ++ on List[A] and any monoid on A" !

The base case is omitted here, but is in the code, this means that:

XS == 7 :: z8 — XS has > 1 element.

Shttps://en.wikipedia.org/wiki/Monoid#Monoid _homomorphisms

11

https://en.wikipedia.org/wiki/Monoid#Monoid_homomorphisms

M .append(fold(zs), fold(ys)) (1)

xs definition — (2)

M.append(fold(z :: zs), fold(ys)) (3)

fold definition — (4)

M.append((z :: zs).foldLe ft(M.empty)(M.append), fold(ys)) (5)
foldLeft == foldRight on monoid — (6)

M .append((z :: zs).foldRight(M.empty)(M.append), fold(ys)) (7)
foldRight definition — (8)

M .append(M.append(z, zs. foldRight(M.empty)(M.append)), fold(ys)) (9)
assosciativity — (10)

M.append(z, M.append(zs. fold Right(M.empty)(M.append), fold(ys))) (11)
foldLeft == foldRight on monoid —- (12)

M .append(z, M .append(zs. foldLe ft(M.empty)(M.append), fold(ys))) (13)
fold definition — (14)

M .append(z, M .append(fold(zs), fold(ys))) (15)

induction hypothesis, since size of zs < size of xs — (16)

M .append(z, fold(zs + +ys)) (17)

fold definition — (18)

M.append(z, (zs + +ys).foldLe ft(M.empty)(M.append)) (19)
foldLeft == foldRight on monoid — (20)

M.append(z, (zs + +ys). fold Right(M .empty)(M.append)) (21)
foldRight definition — (22)

(z :: zs + +ys). foldRight(M .empty) (M.append) (23)

foldLeft == foldRight on monoid = (24)

(z 2 zs + +ys). foldLe ft(M.empty)(M.append) (25)

xs definition — (26)

(xs + +ys).foldLe ft(M.empty)(M.append) (27)

Great, we managed to prove this property with a rigorous mathematical reasoning
and the best thing is we can basically write it as is in Scala and Stainless
understands it!

However we are not done yet, we still need to write the parallel fold methods and
ConcRope is still missing a function to generate a ConcRope from a List.

I added two parallel methods, one that is fully parallel and another one that
is parallel until the trees are smaller than a given threshold. These parallel
methods use a ForkJoinPool, it is the same as what we used in the Parallelism
and Concurrency course. Now we need to prove that all these parallel methods
are equivalent to one another. These proofs are not particularly interesting as
they only state the ‘obvious’ to show that it’s equivalent. What they boil down
to is only saying that since computing the children in parallel is equivalent as

12

computing them sequentially we get the same result. They are available here'®.

Now for our case study and for practicality we need a method to convert a List to
a ConcRope as it doesn’t exist yet. The method itself is relatively straightforward
as ConcRope already has a method to append an element.

def concRopeFromList[A] (xs: List[A]): Conc[A] = {
xs match {
case Nil() => Empty[A] ()
case Cons(y, ys) => append(concRopeFromList(ys), y)

}

} ensuring (res => res.valid &&
res.content == xs.content &&
res.size == xs.size &&
res.tolList == xs.reverse)

Note: ConcRope has a method to prepend an element which would lead the same
list, this one yields a ConcRope with reversed order, but it is slower so I added
both and will use this method for the case study.

Now, proving that this method yields the reversed list is not trivial, but it is
an interesting proof. You can take a look at it in the appendix. The proof is
interesting because it’s segmented in different parts, first we use induction to see
that:

XS =y :: ys
conc = concRopeFromList(xs)

conc == append(concRopeFromList(ys), y)

conc.tolList == concRopeFromList(ys).toList ++ (y :: Nil)

// Induction
concRopeFromList (ys) .tolist == ys.reverse

conc.tolist == ys.reverse ++ (y :: Nil)

// Need to show

ys.reverse ++ (y :: Nil) == ys.reverse ++ (y :: Nil).reverse
ys.reverse ++ (y :: Nil).reverse == ((y :: Nil) ++ ys).reverse
((y :: Nil) ++ ys).reverse == (y :: ys).reverse

// Namely

listl.reverse ++ list2.reverse == (1list2 ++ listl).reverse

Then to prove this I had to prove an additional property: list concatenations
are right assosciative. Actually they are assosciative but I only needed right
assosciativity here. Again the code can be found in the appendix.

Note: you can see a pattern there, most of the time proving a difficult property

https://github.com/Gorzen/stainless/blob/sorting-project /lucien /FoldMapConcRope.
scala

13

https://github.com/Gorzen/stainless/blob/sorting-project/lucien/FoldMapConcRope.scala
https://github.com/Gorzen/stainless/blob/sorting-project/lucien/FoldMapConcRope.scala

becomes proving many smaller properties that together prove the big property.
Divide and conquer.

Case study: word count

Now that we have defined all this structure and the folding operations on List
and ConcRope we want to know how they compare. To do this we decided to
work on a word count, because it could use everything we have used so far. Here
is what the code does:

1. Read a given file, creating a list of words

2. Map the list of words to a list of wordcount objects (WC), they are basically

multisets; a map from String to BigInt. So, map every word to a singleton

multiset.

Optional step: map the List [WC] — ConcRope [WC]

4. Fold (in parallel or sequentially if it’s a ConcRope) the Collection [WC]
using a Monoid [WC] that merges the two multisets in order to get the final
WC.

5. From the WC, retrieve a List [(String, BigInt)].

6. Sort the List[(String, BigInt)] wusing a TotalOrder[(String,
BigInt)] that sorts the most used words first.

7. Write the sorted list to a file.

w

This case study will, thus, indeed use everything written so far and is a good
method to compare List to ConcRope and to see how faster the parallel fold is to
the sequential one. We then can put a file of arbitrary size to see how all these
methods compare (if it fits in stack and heap).

Note: the new Monoid and TotalOrder defined for the word count have to be
verified of course.

Results

Here are the results, for a file of 128’457 lines, 1’095’683 words of which 81’409
unique words. It is in fact a book written in English and these are the first lines
of the output:

the => 71744
of => 39169

and => 35968
to => 27895

a => 19811

Folding
2 core - 4 thread CPU

14

ConcRope Parallel Time

Conversion Listf WC] — ConcRope[WC] 2.819627273 s
Parallel fold on ConcRope[WC], min size 32, 4 threads ~ 9.320218039 s
Parallel fold on ConcRope[WC], min size 64, 4 threads 8.719147123 s
Parallel fold on ConcRope[WC], min size 32, 8 threads — 9.25718213 s
Parallel fold on ConcRope[WC], min size 64, 8 threads 9.829431564 s
[WC]
[WC]

Parallel fold on ConcRope|WC], min size 32, 16 threads 9.905632951 s
Parallel fold on ConcRope|WC], min size 64, 16 threads 9.753053033 s
Best total time 11.538774396 s

Qaaaa

Note: min size defines the threshold at which we compute the fold sequentially.

ConcRope Sequential Time

Conversion List[WC] — ConcRope[WC] 2.819627273 s

Sequential fold on ConcRope|WC] 15.049214472 s

Total time 17.868841744999997 s
List Time

Sequential foldLeft on List{WC] 132812.152160333 s

These results make sense, the parallel is the best especially if we fully utilize all
the cores, sequential fold on ConcRope is slower and fold on List is the slowest.
However, the List fold is really terrible we didn’t expect it to be this bad but there
is a reason for it that will be discussed further in the “ Fauster multiset” section.

Sorting

Sorting Time

MergeSort on output (81’409 elements) 0.516807123 s
InsertionSort on output (81’409 elements) 82.337158522 s

No big surprise here merge sort is significantly faster than insertion sort, even
though it’s on a linked list like structure. As I said earlier we used to have issues
where they would have somewhat the same runtime because the splitting method
was slow but as we can see it has been fixed.

Extensions to ConcRope

As we have seen with the case study ConcRopes can be really efficient and easily
parallelized, they are very interesting data structures. Thus, in the continuity of
extending the library we thought it could be interesting to extend ConcRope to

15

make it easier to work with. Indeed, when writing code using ConcRope I realized
that it is missing some functions or some syntactic sugar functions which would
permit a smoother code. Our goal was to add methods to make its abstraction
more list-like such that it’s easier to use.

I made a list comparing the methods from List and ConcRope to see which ones
are missing and started implementing the ones that seemed the most useful. I
managed to add the following methods:

Syntactic sugar Map methods List-like Folding Conversion Predicates
map head foldMap toSet contains

i+ flatMap headOption foldLeft content exists

++ flatten foldRight fromList forall

apply fromListReversed find

However, while adding these methods I realized that it unfortunately isn’t feasible
to have an efficient and verified fully List-like abstraction with the time given.
This is the case for two reasons:

1. I tried adding reverse and filter however I didn’t manage to add them, it

would have required much more time. The actual implementation isn’t the
problem, the problem was proving the postconditions we would expect from
these methods. Since ConcRope has a much more complex construction as
List, Stainless needs a lot more help when proving properties. Concatenation
of two lists is simple you just put them side by side, but the implementation
of concatenation of ConcRope is much more complex and makes it way harder
to show that some properties still hold after concatenation. For example
for fold, Stainless has trouble seeing that concatenating two filtered trees
results in a filtered tree and writing the exhaustive proof is no easy task
given the complex concatenation operation. For reverse, showing that the
reversed ConcRope’s list is the reverse of the original ConcRope was pretty
straightforward but an exhaustive proof showing that the reversed tree is a
valid one is much harder, i.e. that the tree is balanced and still holds all the
properties of a ConcRope.

. Methods such as tail, drop, take and all methods that get rid of a chunk of

the tree are not really suited for the design of the tree. Maybe there is some
way to implement some of them efficiently but the problem is if you simply
remove some part of the tree, it will generally not hold some of its properties
anymore. We can of course reconstruct a tree containing only the elements
wanted but this is not efficient at all. Reading the many papers involving
trees to find the best implementation for all of these methods would have
required more time and wasn’t the main focus of this project. Thus, we
can only get so close to a list-like abstraction. Maybe we could find an
efficient way to transform the tree in a valid way for some of these methods
but this would require more time. And we would still need to prove the
implementation correct, knowing that the more complex the implementation
the more complex the proof usually.

16

Faster multiset

As we have seen in the study case, the fold on the List took extremely long, it’s
supposed to be slower than ConcRope but not as slow as this. It caught our
attention and we tried to understand why that was the case. It turns out that this
is due to the multiset implementation of Stainless. Since we do as many unions as
we have words, if we have an inefficient union operation it can drastically affect
runtime. This was the former implementation of multiset, called Bag in Stainless:

case class Bag[T] (theBag: scala.collection.immutable.Map[T, BigInt]) {
def get(a: T): BigInt = theBag.getOrElse(a, BigInt(0))
def apply(a: T): BigInt = get(a)
def isEmpty: Boolean = theBag.isEmpty
def +(a: T): Bagl[T] =
new Bag(theBag + (a -> (theBag.getOrElse(a, BigInt(0)) + 1)))

def ++(that: Bag[T]): Bag[T] = new Bag[T](

(theBag.keys ++ that.theBag.keys).toSet.map { (k: T) =>

k -> (theBag.getOrElse(k, BigInt(0)) + that.theBag.getOrElse(k, BigInt(0)))
}.toMap)

def --(that: BaglT]): BaglT] = // Omitted
def &(that: Bagl[T]): BaglT] = // Omitted
b

The method that really interests us here is ++, it is highly inefficient. It unions all
the keys of both maps, then for every key gets the value of the key in both maps
and constructs a map that way. In fact, the fold on List is basically the worst
case possible for this implementation and really shows the problem with it. Our
fold on List is defined as a foldLeft and will proceed as such:

// Step 0

z: Empty - fold - w1l :: w2 :: w3 :: w4 :: wb ...
// Step 1

z: wl - fold - w2 :: w3 ...

//Step 2

z: (w1, w2) - fold - w3 :: w4 :: wb ...

// Step ...
z: (wil,...,wn) - fold - wn+l ::

The inefficiency comes from the fact that z becomes a huge Bag but we only union
it with singleton Bags thus at every union we take all the keys of z and map them
just to add one word! The bags are as unbalanced as you can get. Whereas on
the ConcRope, due to the fact that the tree is balanced, you union bags that have
similar sizes and thus unions are highly more efficient.

Having found the source of the problem I started implementing a more efficient
Bag, keeping in mind that the bags being unioned may be very unbalanced. The
former implementation is basically O(n + m) where n and m are the sizes of the

17

bags unioned. It should be possible to achieve O(min(n, m)) if we only care about
the smaller Bag and add it to the bigger one. The implementation I came up with
is the following:

def ++(that: Bag[A]): Bag[A] = {
if (that.theBag.size > theBag.size)
// Order of a set doesn't matter
that ++ this
else {
Bag(that.theBag.toSeq.foldLeft (theBag) ((z, x) => {
z.get(x._1) match {
case None => z + ((x._ 1, x._2))
case Some(i) => z.updated(x._1, x. 2 + i)
}
)
}
}

Excellent, our union becomes a foldLeft on the smaller Bag, meaning that it now
should indeed be O(min(n,m))!

But what about proofs? If I change the implementation of Bag, can it not break
many former proofs? Fortunately, it doesn’t. Bag has a special inner definition
inside Stainless used when proving properties, this implementation is only used at
runtime. Having an inner definition of Bag inside Stainless makes it way more
efficient for proofs. This is why Stainless is so much better at proving properties
involving sets; it knows many things about them that it can use to prove properties.
Thus, as long as this implementation is correct we are okay, no need to change
older proofs.

Note: I also rewrote the — - method using a similar approach.

Let’s see how long the fold of the case study takes now.

4 core - 8 thread CPU, same file as previously

ConcRope, 8 threads, 64 min size List

List -> ConcRope 2.819627273 s None
Fold 0.871780456 s 1.12009817 s

Very impressive results, ConcRope is still better but it’s much closer. The overhead
of converting the List to ConcRope has a much bigger impact now. Since the
runtime is now pretty short we can see what happens on an even bigger file. To
do this I had to change the case study workflow because reading the entire list of
words in one go was too much for the memory, it was painfully slow. I changed it
such that we compute the word count of every line while reading the file, creating
one word count for every line and then we fold again on all the lines giving us the
final word count. I thus also had to change the time computation, it now adds
the time of every fold operation and of every conversion of List to ConcRope to

18

have a finer grained benchmarking result.

Here are the results for the new file, 52’957’736 words:

ConcRope, 8 threads, 64 min size List

All conversions to ConcRope 7.944933202 s None
All folds 78.286540203 s 104.111247938 s

I then tried to improve the Bag even further, instead of computing the proper
union every time we can store the two bags when the Bags are big and that’s it,
giving us a tree-like structure of Bag. Then when you want to get an element you
add the result of the children. This would give us a O(1) union, however the time
to get an element would be slower, O(logn) typically.

I tried different implementations, different ways to balance the Bags such that
they are as balanced as possible and as close to the threshold size as possible; some
lazy implementations, some finer grained implementations. The implementation
with the best results can be found in the appendix.

Unfortunately even this one doesn’t really improve the time. Plus this structure
of Bags is a little unusual and makes retrieving elements slower, it can even make
it ridiculously slow. Moreover, this design isn’t suited for Bags subtraction which
our abstraction needs to have, they can’t be efficient. So I decided to come back
to the simpler foldLeft implementation.

Parallel, § threads, 64 min size fold, bag threshold: 10°000

foldLeft union Tree like Bags

All folds 78.286540203 s 80.284113909 s
Retrieving List 0.40157084 s 274.699970205 s

The fold doesn’t have any speedup even though it’s supposed to be O(1) because
creating this tree is really heavy on memory. The ConcRope is huge and has to
be in memory, traversing the whole thing takes a lot of time and every leaf only
contains a single word, that’s a lot of leaves. So if we add on top of that Bags
that are trees instead of flattened Bags, it’s really memory-heavy. It uses almost
all 16GB of my computer.

As expected the time to retrieve list is way worse, we can see it especially well
here because we retrieve a big list.

Something that could probably speed up the fold even more and would probably
reduce the intensive usage of memory is having efficient arrays at leaves instead
of singular elements. We would probably have better spatial locality and more
efficient memory usage.

19

Conclusion

I have written ordering and monoid algebraic structures in Stainless and proved
their properties on some examples. 1 have written a case study using these
structures and the methods defined on them to compare two data structures. I
extended the APT of the ConcRope data structure and, using the results of the
case study, improved the implementation of the multiset in Stainless. I found out
that extending ConcRope even more would require more time as it’s difficult to
translate list-like methods to a tree-like data structure that must verify certain
properties.

Further work

As we have seen, it’s no easy task to extend the ConcRope even more. It would
need time to think about how to implement certain methods and how to prove
certain properties on the tree. However, efficient trees is a field that has already
been thoroughly studied so we could find insipration from notorious researchers
such as Doctor Knuth.

We could make the ConcRope more efficient by, as said earlier, having efficient
mutable arrays at the leaves instead of singular elements. However, these kinds
of arrays are not supported yet in Stainless so it would require adding stuff to
Stainless itself.

I made the multiset more efficient, however we could do the same for other parts
of the library, Set, Map, etc... We could also add some methods that are missing
from the standard API to them. List has many of the standard API methods but
it could be more efficient, especially regarding the stack, most of the methods are
not tail recursive and some methods are really slow. However, this wouldn’t be
easy as we would need to update the proofs of List while having more complex
methods.

20

References

1. Aleksandar Prokopec and Martin Odersky. Conc-Trees for Functional and
Parallel Programming. Raleigh, North Carolina, September 2015.
http://aleksandar-prokopec.com/resources/docs/lcpc-conc-trees.pdf

21

Appendix

Nat

Nat code definition:

sealed abstract class Nat {
def <(m: Nat): Boolean = {
(this, m) match {
case (Succ(ts), Succ(ms)) => ts < ms
case (Zero, Succ(ms)) => true
case _ => false

def <=(m: Nat): Boolean = {
this == m || this < m
+
}

final case object Zero extends Nat
final case class Succ(prev: Nat) extends Nat

22

Proof foldLeft == foldRight

def foldLeftEqualsFoldRight[A] (xs: List[A]) (implicit M: Monoid[A]): Boolean = {
decreases(xs.size)
(xs.foldLeft (M.empty) (M.append) == xs.foldRight(M.empty) (M.append)) because {
xs match {
case Nil() => {

Nil[A] () .foldLeft (M.empty) (M.append) ==| trivial |
M.empty ==| trivial |
Nil[A] () .foldRight (M.empty) (M.append)
}.qed
case Cons(y, Nil()) => {
Cons(y, Nil[A]()) .foldLeft(M.empty) (M.append) ==| trivial
Nil[A] O .foldLeft (M.append(M.empty, y))(M.append) ==| M.law_leftIdentity(y)
Nil[A] () .foldLeft(y) (M.append) ==| trivial
N ==| M.law_rightIdentity(y)
M.append(y, M.empty) ==| trivial

M.append(y, Nil[A]().foldRight(M.empty) (M.append))==| trivial
Cons(y, Nil[A]()).foldRight(M.empty) (M.append)
}.qed
case Cons(yl, Cons(y2, ys)) =>
assert((yl :: y2 :: ys).foldLeft(M.empty) (M.append) ==
(y2 :: ys).foldLeft(M.append(M.empty, y1)) (M.append))
assert(M.law_leftIdentity(yl))
assert((y2 :: ys).foldLeft(M.append(M.empty, y1)) (M.append) ==
(y2 :: ys).foldLeft(y1l) (M.append))
assert((y2 :: ys).foldLeft(yl) (M.append) ==
ys.foldLeft (M.append(yl, y2))(M.append))
assert(M.law_leftIdentity(M.append(yl, y2)))
assert(ys.foldLeft(M.append(yl, y2)) (M.append) ==
ys.foldLeft (M.append(M.empty, M.append(yl, y2)))(M.append))
assert(ys.foldLeft(M.append(M.empty, M.append(yl, y2)))(M.append) ==
(M.append(yl, y2) :: ys).foldLeft(M.empty) (M.append))
assert((M.append(yl, y2) :: ys).size < (y1 :: y2 :: ys).size)
assert(foldLeftEqualsFoldRight (M.append(yl, y2) :: ys))
assert ((M.append(yl, y2) :: ys).foldLeft(M.empty) (M.append) ==
(M.append(yl, y2) :: ys).foldRight(M.empty) (M.append))
assert ((M.append(yl, y2) :: ys).foldRight(M.empty) (M.append) ==
M.append (M.append(yl, y2), ys.foldRight(M.empty) (M.append)))
assert(M.law_associativity(yl, y2, ys.foldRight(M.empty) (M.append)))
assert(M.append (M. append(yl, y2), ys.foldRight(M.empty) (M.append)) ==
M.append(y1l, M.append(y2, ys.foldRight(M.empty) (M.append))))
assert(M.append(yl, M.append(y2, ys.foldRight(M.empty) (M.append))) ==
M.append(yl, (y2 :: ys).foldRight(M.empty) (M.append)))
assert(M.append(yl, (y2 :: ys).foldRight(M.empty) (M.append)) ==
(y1 :: y2 :: ys).foldRight (M.empty) (M.append))
check((yl :: y2 :: ys).foldLeft(M.empty) (M.append) ==
(y1 :: y2 :: ys).foldRight (M.empty) (M.append))

23

}
+
}.holds

Proof ConcRopeFromlList

def proof_concRopeFromList[A] (xs: List[A]): Boolean = {
(concRopeFromList(xs) .tolList == xs.reverse) because lemma_concRopeFromList (xs)
}.holds

def lemma_concRopeFromList[A] (xs: List[A]): Boolean = {
decreases(xs.size)
xs match {
case Nil() =>
assert (concRopeFromList (Ni1[A] ()).toList == Nil[A]())
assert (Nil[A] (O == Nil[A] Q) .reverse)
check(concRopeFromList (Nil[A] ()) .toList
case Cons(y, ys) => {
assert(concRopeFromList(y :: ys).tolList ==
append (concRopeFromList (ys), y).toList)
assert (append(concRopeFromList (ys), y).toList ==
concRopeFromList (ys) .toList ++ Cons(y, Nil[A]()))
assert(lemma_concRopeFromList(ys))
assert (concRopeFromList (ys) .toList ++ Cons(y, Nil[A]()) ==
ys.reverse ++ Cons(y, Nil[A]1()))
assert(ys.reverse ++ Cons(y, Nil[A]()) ==
ys.reverse ++ Cons(y, Nil[A] ()) .reverse)
assert(concat_reverse(Cons(y, Nil[A]()), ys))
assert(ys.reverse ++ Cons(y, Nil[A]()).reverse ==
(Cons(y, Nil[A]()) ++ ys).reverse)
assert((Cons(y, Nil[A]J()) ++ ys).reverse == (y :: ys).reverse)
check(concRopeFromList (xs) .toList == xs.reverse)

Nil[A] () .reverse)

24

def concat_reverse[A] (xs: List[A], ys: List[A]): Boolean = {

decreases(xs.size)
((xs ++ ys).reverse == ys.reverse ++ xs.reverse) because {

xs match {
case Nil() => {

(Nil1[A] () ++ ys).reverse ==| trivial |
ys.reverse ==| trivial |
ys.reverse ++ Nil[A] () ==| trivial |
ys.reverse ++ Nil[A] () .reverse
}.qed
case Cons(z, zs) => {
((z :: zs) ++ ys).reverse ==| trivial |
(z :: zs ++ ys).reverse ==| trivial |
(zs ++ ys).reverse :+ z ==| concat_reverse(zs, ys) |
(ys.reverse ++ zs.reverse) :+ z ==| trivial |

ys.reverse ++ zs.reverse :+ z
==| right_assosciative(ys.reverse, zs.reverse, z) |

ys.reverse ++ (zs.reverse :+ z) ==| trivial |
ys.reverse ++ (z :: zs).reverse
}.qed
}
+
}.holds

def right_assosciative[A] (xs: List[A], ys: List[A], y: A): Boolean = {
decreases(xs.size)
(xs ++ ys :+ y == xs ++ (ys :+ y)) because {
xs match {
case Nil() => {

Nil[A]J () ++ ys :+ y ==| trivial |
ys :+ y ==| trivial |
Nil[ATJO) ++ (ys :+ y)

}.qed

case Cons(z, zs) => {
(z :: zs) ++ ys :+ y ==| trivial |
z :: (zs ++ ys :+ y) ==| right_assosciative(zs, ys, y) |
z :: (zs ++ (ys :+ y)) ==| trivial |
z :: zs ++ (ys :+ y) ==| trivial |
(z 12 zs) ++ (ys :+ y)

}.qed

}
}
}.holds

25

Bag union, SmallBag - BigBag

def ++(that: Bagl[A]): Bag[A] = {
if (that.size > this.size)
that ++ this
else (this, that) match {
case (SmallBag(theMap), SmallBag(thatMap)) if theMap.size <= threshold =>
// concatMaps is equivalent to the foldLeft union we saw before
SmallBag(concatMaps(theMap, thatMap))
case (SmallBag(theMap), SmallBag(thatMap)) => BigBag(this, that)
case (SmallBag(theMap), BigBag(left, right)) if theMap.size <= threshold =>
smallBagConcat (SmallBag(theMap), that.flatten)
case (SmallBag(theMap), BigBag(left, right)) => BigBag(this, that)
case (BigBag(left, right), SmallBag(thatMap)) if right.size <= threshold =>
BigBag(left, right ++ SmallBag(thatMap))
case (BigBag(left, right), SmallBag(thatMap)) => BigBag(this, that)
case (BigBag(l1l, r1), BigBag(l2, r2)) if rl.size <= threshold =>
BigBag(BigBag(1ll, rl ++ r2), 12)
case (BigBag(l1l, r1), BigBag(l2, r2)) => BigBag(this, that)
}

26

	Introduction
	Laws
	Comparison
	Equality
	Partial order
	Total order
	Example: Total order
	Example: Sorting

	Semigroups and monoids
	Semigroup
	Monoid
	Examples

	Folding
	Lists
	ConcRopes

	Case study: word count
	Results

	Extensions to ConcRope
	Faster multiset
	Conclusion
	Further work
	References
	Appendix
	Nat
	Proof foldLeft == foldRight
	Proof ConcRopeFromList
	Bag union, SmallBag - BigBag

