
Advancing Algebraic Reasoning for Scala

Lucien Michaël Iseli

June 15th, 2019

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 1 / 28



Project

Stainless
Proves properties statically
Supports a good chunk of functional Scala

Goal
Write a bigger verified project using Stainless
Algebraic structures
Proofs
Real world results

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 2 / 28



Algebraic structures - Comparison

Equality
Reflexive: ∀𝑥 ∶ 𝑥 = 𝑥
Symmetric: ∀𝑥, 𝑦 ∶ 𝑥 = 𝑦 ⟺ 𝑦 = 𝑥
Transitive: ∀𝑥, 𝑦, 𝑧 ∶ 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ⟹ 𝑥 = 𝑧

Partial Order - defined with ≤
Reflexive: ∀𝑥 ∶ 𝑥 ≤ 𝑥
Antisymmetric: ∀𝑥, 𝑦 ∶ 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ⟹ 𝑥 = 𝑦
Transitive: ∀𝑥, 𝑦, 𝑧 ∶ 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ⟹ 𝑥 ≤ 𝑧

Total Order - defined with ≤
Connex: ∀𝑥, 𝑦 ∶ 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 3 / 28



Code Equality
abstract class Equality[A] {

def eqv(x: A, y: A): Boolean

@law
def law_reflexive_equality(x: A) = {

eqv(x, x)
}
@law
def law_symmetric_equality(x: A, y: A) = {

eqv(x, y) == eqv(y, x)
}
@law
def law_transitive_equality(x: A, y: A, z: A) = {

(eqv(x, y) && eqv(y, z)) ==> eqv(x, z)
}

}

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 4 / 28



Example: Total order

case class BigIntTotalOrder() extends TotalOrder[BigInt] {
def eqv(x: BigInt, y: BigInt): Boolean = {

x == y
}

def lteqv(x: BigInt, y: BigInt): Boolean = {
x <= y

}
}

Sorting!

Insertion sort
Merge sort

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 5 / 28



Algebraic Structures - Monoid

A semigroup is a set 𝑆 and a function ⊕ ∶ 𝑆 × 𝑆 → 𝑆 that satisfies the
assosciative property.

A monoid is a semigroup but it has additional properties.

Semigroup
Assosciative: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 ∶ (𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐)

Monoid
Identity element: ∃𝑒 ∈ 𝑆 | ∀𝑎 ∈ 𝑆 ∶ 𝑒 ⊕ 𝑎 = 𝑎 ⊕ 𝑒 = 𝑎

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 6 / 28



Algebraic Structures - Monoid - Code
abstract class SemiGroup[A]{

def append(x: A, y: A): A
@law
def law_associativity(x: A, y: A, z: A) = {

append(x, append(y, z)) == append(append(x, y), z)
}

}
abstract class Monoid[A] extends SemiGroup[A]{

def empty: A
@law
def law_leftIdentity(x: A) = {

append(empty, x) == x
}
@law
def law_rightIdentity(x: A) = {

append(x, empty) == x
}

} Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 7 / 28



Fold - List
Fold is an important method and is interesting when defined on monoids

def foldLeft[R](z: R)(f: (R,T) => R): R = this match {
case Nil() => z
case Cons(h,t) => t.foldLeft(f(z,h))(f)

}
def foldRight[R](z: R)(f: (T,R) => R): R = this match {

case Nil() => z
case Cons(h, t) => f(h, t.foldRight(z)(f))

}
def fold[A](xs: List[A])(implicit M: Monoid[A]): A = {

xs.foldLeft(M.empty)(M.append)
}

Proved simple cases, i.e. sum is correct
Interesting: foldLeft == foldRight thanks to monoids
(omitting base cases, xs.length >= 2)

▶ Stainless better with foldRight
Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 8 / 28



Proof - foldLeft == foldRight

𝑥𝑠.𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)
(𝑦1 ∶∶ 𝑦2 ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)

(𝑦2 ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑀.𝑒𝑚𝑝𝑡𝑦, 𝑦1))(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)
(𝑦2 ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑦1)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)

𝑦𝑠.𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, 𝑦2))(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)
𝑦𝑠.𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑀.𝑒𝑚𝑝𝑡𝑦, 𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, 𝑦2)))(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)

(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, 𝑦2) ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝐿𝑒𝑓𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)
(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, 𝑦2) ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)

𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, 𝑦2), 𝑦𝑠.𝑓𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)
𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, 𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦2, 𝑦𝑠.𝑓𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)

𝑀.𝑎𝑝𝑝𝑒𝑛𝑑(𝑦1, (𝑦2 ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑))
(𝑦1 ∶∶ 𝑦2 ∶∶ 𝑦𝑠).𝑓𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)

𝑥𝑠.𝑓𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡(𝑀.𝑒𝑚𝑝𝑡𝑦)(𝑀.𝑎𝑝𝑝𝑒𝑛𝑑)
Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 9 / 28



Fold - ConcRope

Balanced, easily parallelized tree-like data structure.

Complex union.

Paper by Aleksandar Prokopec.

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 10 / 28



Fold - ConcRope
case class Empty[T]() extends Conc[T]
case class Single[T](x: T) extends Conc[T]
case class CC[T](left: Conc[T], right: Conc[T])

extends Conc[T]
case class Append[T](left: Conc[T], right: Conc[T])

extends Conc[T]

def foldSequential[A](xs: Conc[A])(implicit M: Monoid[A]): A = {
xs match {

case Empty() => M.empty
case Single(x) => x // Thanks to left identity

// we can simply return x
case CC(left, right) =>

M.append(foldSequential(left), foldSequential(right))
case Append(left, right) =>

M.append(foldSequential(left), foldSequential(right))
}

}
Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 11 / 28



Fold - ConcRope

Interesting proof: xs: Conc[A] - fold(xs.toList) == fold(xs)
▶ Correct implementation
▶ fold(xs) → fold(xs.toList) → foldRight(xs.toList)

Parallel folds, proofs

List[A] → Conc[A]
Conc has append and prepend methods
fromList with prepend (faster) ⟹ reverse list
Proof fromList(xs).toList == xs.reverse

▶ (xs ++ ys).reverse == ys.reverse ++ xs.reverse
▶ xs ++ ys ++ zs == xs ++ (ys ++ zs) - right assosciative

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 12 / 28



Case study: word count

1 Read file ⟹ List[String], list of words.
2 Map List[String] → List[WC]. WC are multisets of String.
3 Optional step: map the List[WC] → ConcRope[WC].
4 Fold (parallel or sequential) the Collection[WC] with Monoid[WC]

⟹ get final WC.
5 From the WC, retrieve a List[(String, BigInt)].
6 Sort the List[(String, BigInt)] using a TotalOrder[(String,

BigInt)].
7 Write the sorted list to a file.

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 13 / 28



Case study: word count - Results

File of 1’095’683 words, containing 81’409 unique words

The first five lines of the output

the => 71744
of => 39169
and => 35968
to => 27895
a => 19811

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 14 / 28



Case study: word count - Results

2 core - 4 thread CPU

ConcRope Parallel Time
Conversion List[WC] → ConcRope[WC] 2.819627273s
Parallel fold on ConcRope[WC], min size 32, 4 threads 9.320218039 s
Parallel fold on ConcRope[WC], min size 64, 4 threads 8.719147123 s
Parallel fold on ConcRope[WC], min size 32, 8 threads 9.25718213 s
Parallel fold on ConcRope[WC], min size 64, 8 threads 9.829431564 s
Parallel fold on ConcRope[WC], min size 32, 16 threads 9.905632951 s
Parallel fold on ConcRope[WC], min size 64, 16 threads 9.753053033 s
Best total time 11.538774396 s

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 15 / 28



Case study: word count - Results
ConcRope Sequential Time
Conversion List[WC] → ConcRope[WC] 2.819627273 s
Sequential fold on ConcRope[WC] 15.049214472 s
Total time 17.868841744999997 s

List Time
Sequential foldLeft on List[WC] 132812.152160333 s

Sorting Time
MergeSort on output (81’409 elements) 0.516807123 s
InsertionSort on output (81’409 elements) 82.337158522 s

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 16 / 28



Extensions to ConcRope

Syntactic sugar Map methods List-like
:: map head
:+ flatMap headOption
++ flatten
apply

Conversion Folding Predicates
toSet foldMap contains
content foldLeft exists
fromList foldRight forall
fromListReversed find

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 17 / 28



Extensions to ConcRope

Adding other methods is no easy task
They need to be efficient on balanced trees
Proofs of correctness

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 18 / 28



Faster multiset

Terribly slow fold on List.

Inefficient multiset in library, union 𝑂(𝑛 + 𝑚)
def ++(that: Bag[T]): Bag[T] = new Bag[T](

(theBag.keys ++ that.theBag.keys).toSet.map { (k: T) =>
k -> (theBag.getOrElse(k, BigInt(0)) +

that.theBag.getOrElse(k, BigInt(0)))
}.toMap)

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 19 / 28



Faster multiset

Why is it so slow on List but not on ConcRope?

z: Empty - Bag(w1) :: Bag(w2) :: Bag(w3) :: Bag(w4) :: ...

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 20 / 28



Faster multiset

Why is it so slow on List but not on ConcRope?

z: Bag(w1) - Bag(w2) :: Bag(w3) :: Bag(w4) :: ...

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 21 / 28



Faster multiset

Why is it so slow on List but not on ConcRope?

z: Bag(w1, w2) - Bag(w3) :: Bag(w4) :: ...

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 22 / 28



Faster multiset

Why is it so slow on List but not on ConcRope?

z: Bag(w1, w2, w3) - Bag(w4) :: ...

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 23 / 28



Faster multiset

Why is it so slow on List but not on ConcRope?

...

z: Bag(w1, ..., wn) - Bag(wn+1) :: Bag(wn+2) :: ...

𝑂(𝑚 + 𝑛)
The Bags are as unbalanced as possible, even though we only add one
word the operation is really slow. It doesn’t get a lot of work done.

ConcRopes will result in balanced unions by construction so they are more
efficient.

This is basically the worst case for this union.

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 24 / 28



Faster multiset

𝑂(𝑚𝑖𝑛(𝑛, 𝑚)) should be possible

def ++(that: Bag[A]): Bag[A] = {
if (that.theBag.size > theBag.size)

// Order of a set doesn't matter
that ++ this

else {
Bag(that.theBag.toSeq.foldLeft(theBag)((z, x) => {

z.get(x._1) match {
case None => z + ((x._1, x._2))
case Some(i) => z.updated(x._1, x._2 + i)

}
}))

}
}

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 25 / 28



Faster multiset - Results

4 core - 8 thread CPU, same file as previously

ConcRope, 8 threads, 64 min size List
List -> ConcRope 2.819627273 s None
Fold 0.871780456 s 1.12009817 s

With a much bigger file (52’957’736 words), changed main such that it
supports bigger files (folds every line).

ConcRope, 8 threads, 64 min size List
Conv. to ConcRope 7.944933202 s None
All folds 78.286540203 s 104.111247938 s

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 26 / 28



Faster multiset

Tried to go further using amortized 𝑂(1) append with a tree-like data
structure.

Wasn’t successful because of the huge memory cost + cost of traversing
the whole ConcRope

Parallel, 8 threads, 64 min size fold, bag threshold: 10’000

foldLeft union Tree like Bags
All folds 78.286540203 s 80.284113909 s
Retrieving List 0.40157084 s 274.699970205 s

Plus, retrieving the list is much worse by construction.

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 27 / 28



Further work

Efficient mutable arrays at leaves of ConcRope for better memory
utilization and faster execution
Extend ConcRope even more, efficient and proved
Improve and speedup other parts of the Stainless library

Lucien Michaël Iseli Advancing Algebraic Reasoning for Scala June 15th, 2019 28 / 28


